首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内连续,以T为周期,证明: (1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数); (2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0; (3)∫f(x)dx(即f(x)的全体原函数)周期为Tf(x)dx=0.
设f(x)在(-∞,+∞)内连续,以T为周期,证明: (1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数); (2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0; (3)∫f(x)dx(即f(x)的全体原函数)周期为Tf(x)dx=0.
admin
2016-09-13
85
问题
设f(x)在(-∞,+∞)内连续,以T为周期,证明:
(1)∫
a
a+T
f(x)dx=∫
0
T
f(x)dx(a为任意实数);
(2)∫
0
x
f(t)dt以T为周期
∫
0
T
f(x)dx=0;
(3)∫f(x)dx(即f(x)的全体原函数)周期为T
f(x)dx=0.
选项
答案
(1)[*]∫
a
a+T
f(x)dx=f(a+T)-f(a)=0 故∫
a
a+T
f(x)dx=∫
a
a+T
f(x)dx|
a=0
=∫
0
T
f(x)dx. (2)∫
0
x
f(t)dt以T为周期<=>∫
0
x+T
f(t)dt-∫
0
x
f(t)dt=∫
x
x+T
f(t)dt[*]∫
0
T
f(t)dt=0. (3)只需注意∫f(x)dx=∫
0
x
f(t)dt+C,∫
0
x
f(t)dt是f(x)的一个原函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/2JT4777K
0
考研数学三
相关试题推荐
1948年4月,毛泽东系统地阐明的中国共产党的土地改革总路线是()。
中共二大提出了资产阶级小资产阶级政党从没有采取过的革命方法是()。
在近代中国,实现国家富强和人民富裕的前提条件是()。
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
证明[*]
设P(x1,y1)是椭圆外的一点,若Q(x2,y2)是椭圆上离P最近的一点,证明PQ是椭圆的法线.
按两种不同次序化二重积分为二次积分,其中D为:(1)由直线y=x及抛物线y2=4x所围成的闭区域;(2)由y=0及y=sinx(0≤x≤π)所围成的闭区域;(3)由直线y=x,x=2及双曲线y=1/x(x>0)所围成的闭区域;(4)由(x-1)2+
如果存在直线y=ax+b,使当x→+∞时,曲线y=f(x)上的点M(x,y)到该直线的距离趋于零,则称直线y=ax+b为曲线y=f(x)(当x→+∞时)的渐近线.当斜率a≠0时,称此渐近线为斜渐近线.当x→-∞或x→∞时的渐近线的定义可类似给出.(1)根
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
随机试题
2017年1—2月,全国规模以上工业企业实现利润总额10156.8亿元,同比增长31.5%。1-2月,规模以上工业企业中国有控股企业实现利润总额2336.3亿元,同比增长1倍;集体企业实现利润总额68.5亿元,增长9.6%;股份制企业实现利润总额6976
下列文章中,通篇以寓言形式说理的是
A.β受体阻滞剂B.钙拮抗剂C.硝酸酯类D.多巴胺E.ACEI急性心肌梗死时预防猝死
下列哪些是机械通气的禁忌证
(),是指由于债权人一方的原因,而使债务人不能依据合同的约定向其交付标的物的,法律规定,债务人有权将该标的物交给有关机构保存,从而完成履行债务,并终止合同关系的法律制度。
从事导游工作必须接受旅行社委派,私自招揽团队进行导游活动属于非法()
2008年1—5月美洲来华旅游人群中,男女比例最大的是:
《学记》中“道而弗牵,强而弗抑,开而弗达”的教学思想,体现的教学原则是()
仓库存有水泥和沙子,已知水泥比沙子多3500千克,水泥的质量比沙子的3倍多500千克,则水泥有多少千克?()
局域网中访问冲突的根源是()。
最新回复
(
0
)