首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设0≤a<b,f(χ)在[a,b]上连续,(a,b)内可导,证明在(a,b)内存在三点χ1,χ2,χ3使f′(χ)=(b+a)
设0≤a<b,f(χ)在[a,b]上连续,(a,b)内可导,证明在(a,b)内存在三点χ1,χ2,χ3使f′(χ)=(b+a)
admin
2020-02-28
77
问题
设0≤a<b,f(χ)在[a,b]上连续,(a,b)内可导,证明在(a,b)内存在三点χ
1
,χ
2
,χ
3
使f′(χ)=(b+a)
选项
答案
对f(χ)在[a,b]2使用拉格朗日中值定理可得,存在χ
1
∈(a,b)使得 [*] 对f(χ),g(χ)=χ
2
在[a,b]使用柯西中值定理可得,存在χ
2
∈(a,b)使得 [*] 对f(χ),h(χ)=χ
3
在[a,b]上使用柯西中值定理可得,存在χ
3
∈(a,b)使得 [*] 由(1),(2),(3)可得,在(a,b)内存在三点χ
1
,χ
2
,χ
3
使得 f′(χ
1
)=(b+a)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/2PA4777K
0
考研数学二
相关试题推荐
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:|E+A+A2+…+An|的值.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明:r=n;(2)设ξ1,ξ2,…,ξr,与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
曲线y=x(x-1)(2-x)与x轴所围成的图形面积可表示为().
在曲线y=x2(0≤x≤1)上取一点(t,t2)(0<t<1),设A1是由曲线y=x2(0≤x≤1),直线y=t2和x=0所围成图形的面积;A2是由曲线y=x2(0≤x≤1),直线y=t2和x=1所围成图形的面积,则t取_______时,A=A1+A2取最
设f(x)=∫0xarctan(t一x)2dt,g(x)=∫0sinx(3t2+t3cost)dt,当x→0时,f(x)是g(x)的()
若y(x)=∫0xarctan(u-1)2du,则y(x)在区间[0,1]上的平均值为________.
随机试题
在化合物Na2B4O7中B的化合价是()。
基本生产车间固定资产折旧费应列入【】
道德建设是一个体系,在这个体系中一切道德建设的核心问题是()
患者,女,38岁。因月经量增多半年,乏力、面色苍白、活动后心慌气短1个月来诊。查体:T36.4℃,P100次/分,皮肤、黏膜苍白,巩膜无黄染,心肺(-),肝脾肋下未触及。该患者诊断为缺铁性贫血,该病除表现贫血一般症状外,临床还可能出现的症状是
城镇体系具有所有“系统”的共同特征包括()
下列各项中不属于设计概算的内容是( )。
参照国际风险管理标准,集中型风险管理部门的人员必须具备的主要技能包括()。
简述教科书的作用。
判别级数的敛散性.
Forallhisvauntedtalents,FederalReserveChairmanAlanGreenspanhasneverhadmuchofareputationasaneconomicforecaste
最新回复
(
0
)