首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型 xTAx=x22+4x22+x32+2ax1x2+2bx1x2+2cx2x3,矩阵A满足AB=0,其中B= (Ⅰ)用正交变换化二次型xTAx为标准形,并写出所用正交变换; (Ⅱ)求(A一3E)6.
设二次型 xTAx=x22+4x22+x32+2ax1x2+2bx1x2+2cx2x3,矩阵A满足AB=0,其中B= (Ⅰ)用正交变换化二次型xTAx为标准形,并写出所用正交变换; (Ⅱ)求(A一3E)6.
admin
2022-04-08
32
问题
设二次型
x
T
Ax=x
2
2
+4x
2
2
+x
3
2
+2ax
1
x
2
+2bx
1
x
2
+2cx
2
x
3
,矩阵A满足AB=0,其中B=
(Ⅰ)用正交变换化二次型x
T
Ax为标准形,并写出所用正交变换;
(Ⅱ)求(A一3E)
6
.
选项
答案
(Ⅰ)由AB=[*]=0知,矩阵B的列向量是齐次方程组Ax=0的解向量. 记[*],则Aα
1
=0=0α
1
,Aα
2
=0=0α
2
. 由此可知λ=0是矩阵A的特征值(至少是二重),α
1
,α
2
是λ=0的线性无关的特征向量. 根据∑λ
i
=∑a
ii
,有0+0+λ
3
=1+4+1,故知矩阵A有特征值λ=6.因此,矩阵A的特征值是0,0,6. 设λ=6的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,那么由实对称矩阵不同特征值的特征向量相互正交,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/2bf4777K
0
考研数学二
相关试题推荐
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
设f(x)=,则下列结论(1)x=1为可去间断点.(2)x=0为跳跃间断点.(3)x=-1为无穷间断点.中正确的个数是
设A是m×n矩阵,B是n×m矩阵,则()。
设n维行向量α=,矩阵A=I-αTα,B=I+2αTα,其中I为n阶单位矩阵,则AB=【】
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处两个偏导数存在若用“”表示可由性质P推出性质Q,则有
设A是三阶方阵,将A的第1列和第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为()
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线斜率为()
当x→1时,函数的极限()
设y1(x)、y2(x)为二阶变系数齐次线性方程y’’+P(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
随机试题
A、咀嚼痛B、放散性锐痛C、自发性隐痛,冷热刺激痛D、阵发性电击样痛E、张、闭口痛下述疾病最可能表现出上述一种性质的疼痛是急性牙髓炎
患儿,7岁。8月10日发病出现高热、头痛、呕吐1次,次日排稀便2次,精神不振,晚间开始抽搐、神志不清。体检:体温39.5℃,急性病容,脉充实有力,颈有抵抗,克氏征阳性,布氏征阳性,肌张力高,血白细胞15×109/L,粪镜检白细胞每高倍视野0~2个,脑脊液检
拔火罐不适用于
下列各项中,符合资源税暂行条例有关课税数量规定的有( )。
日本的“兰学”是通过()传人的。
十七大以来我们推动和两岸关系,实现重大转折,主要表现在()
修改本地视图的命令是
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好两个表对象住宿登记表“tA”和住房信息表“tB”。试按以下要求完成设计:创建一个查询,查找并显示客人的“姓名”、“入住日期”和“价格”三个字段内容,所建查询命名为“qT1”。
【B1】【B7】
"Theworld’senvironmentissurprisinglyhealthy.Discuss."Ifthatwereanexaminationtopic,moststudentswouldtearitapart
最新回复
(
0
)