首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
admin
2018-04-15
75
问题
设α
1
,α
2
,…,α
n
为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
选项
答案
方法一 令[*]因为α
1
,α
2
,…,α
n
与β正交,所以Aβ=0,即β为方程AX=0的解,而α
1
,α
2
,…,α
2
线性无关,所以r(A)=n,从而方程组AX=0只有零解,即β=0. 方法二 (反证法)不妨设β≠0,令k
1
α
1
+k
2
α
2
+…+k
n
α
n
+k
0
β=0,上式两边左乘β
T
得 k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
n
β
T
α
n
+k
0
β
T
β=0 因为α
1
,α
2
,…,α
n
与β正交,所以k
0
β
T
β=0,即k
0
|β|
2
=0,从而k
0
=0,于是k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,再由α
1
,α
2
,α
n
线性无关,得k
1
=k
2
=…=k
n
=0,故α
1
,α
2
,…,α
n
,β线性无关,矛盾(因为当向量的个数大于向量的维数时向量组一定线性相关),所以β=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/2iX4777K
0
考研数学三
相关试题推荐
设f=为正定二次型,则未知系数a的范围是________
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α1+α3也是该方程组的一个基础解系.
设A=已知线性方程组Ax=b,存在两个不同的解.求方程组Ax=b的通解.
求一个齐次线性方程组,使它的基础解系为ξ1=(0,1,2,3)T,ξ2=(3,2,1,0)T
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1其中t1,t2为实常数.试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系.
设函数f(x)在[0,1]上有连续的导数,f(0)=1,且={(x,y)|0≤y≤t一x,0≤x≤t}(0<t≤1),求f(x)的表达式.
设①求作可逆矩阵P,使得(AP)TAP是对角矩阵.②k取什么值时A+kE正定?
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(φ(2)=0.977).
设且求y′.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且求证:在(a,b)内至少存在一点ξ,使f’(ξ)=0.
随机试题
断肢再植距外伤的时间,一般以多久为限()
不属于犬右心衰的病理特征是()。
患者,女,26岁。已婚。月经规律,周期28天,末次月经4月1日。下述正确的是
患儿5个月,因腹泻1天入院,腹泻日30次,已为泻下无度,质稀如水,色黄混浊,小便10小时未解,皮肤干燥,目眶及前囟凹陷,啼哭无泪,烦躁不安,口渴引饮,口干唇红,舌绛无津。属何变证
设备监理机构设计的结果有()。
关于基金信息披露的表述,不正确的是()。
甲公司设有运输和修理两个辅助生产车间,采用直接分配法分配辅助生产成本。运输车间的成本按运输公里比例分配,修理车间的成本按修理工时比例分配。该公司2013年12月有关辅助生产成本资料如下:(1)运输车间本月共发生成本22500元,提供运输劳务5
我国公开市场业务的操作对象主要是()。
将E盘根目录下的文件“制度.doc”设置为隐藏属性。
有以下程序main(){inta=1,b-2;for(;a
最新回复
(
0
)