首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=x3+4x2-3x-1,试讨论方程f(x)=0在(-∞,0)内的实根情况.
设f(x)=x3+4x2-3x-1,试讨论方程f(x)=0在(-∞,0)内的实根情况.
admin
2016-09-13
77
问题
设f(x)=x
3
+4x
2
-3x-1,试讨论方程f(x)=0在(-∞,0)内的实根情况.
选项
答案
因为f(-5)=-11<0,f(-1)=5>0,f(0)=-1<0,所以f(x)在[-5,-1]及[-1,0]上满足零点定理的条件,故存在ξ
1
∈(-5,-1)及ξ
2
∈(-1,0),使得f(ξ
1
)=f(ξ
2
)=0,所以方程f(x)=0在(-∞,0)内存在两个不等的实根.又因为f(1)=1>0,同样f(x)在[0,1]上满足零点定理的条件,在(0,1)内存在一点ξ
3
,使得f(ξ
3
)=0,而f(x)=0为三次多项式方程,它最多只有三个实根,因此方程f(x)=0在(-∞,0)内只有两个不等的实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/3JT4777K
0
考研数学三
相关试题推荐
第二次鸦片战争后,清朝统治集团内部一部分人震惊于列强的“船坚炮利”,主张学习西方以求“自强”,洋务运动由此兴起。洋务运动的一个重要内容就是创办新式学堂,主要有()。(2012.27多选)
我国的农业社会主义改造经历的形式有()。
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设u=f(x,z),而z=z(x,y)是由方程z=x+yψ(z)所确定的隐函数,其中f有连续偏导数,而ψ有连续导数,求du.
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
若三阶常系数齐次线性微分方程有特解y1=e-x,y2=2xe-x及y3=3ex,则该微分方程是().
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
设f∈R2π,并且f(x)是奇函数,则它的傅里叶多项式的各项都是正弦函数;若f(x)是偶函数,则它的傅里叶多项式的各项除常数项外都是余弦函数.
随机试题
长期资本市场
LastFriday,afterdoingallthefamilyshoppingintown,Iwantedtohavearestbeforecatchingthetrain.I【C1】______anewspa
患者男,69岁。进行性腹痛腹胀1个月余,X线图像如下,最有可能的诊断是
女性,40岁,1个月前发现甲状腺上结节,结节无疼痛,测定血清甲状腺素在正常范围内。如果这位病人有甲状腺肿大,检查中最可能的发现是
A.刺激点B.扳机点C.敏感点D.触痛点E.疼痛点
如图所示正方形截面的形心为C点,其对y、y1轴的惯性矩为Iy、Iy1,这两惯性距之间的关系是( )。
________不属于生产性项目。
ChangjiangRiveris______riverinChina.
Applct生命周期中的关键方法包括:init()、stsrt()、stop()和【】。
Hekeepshimselffitbyrunning5mileseveryday.
最新回复
(
0
)