首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f(0)+[f2(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f"(ξ)+f"(ξ)=0.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f(0)+[f2(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f"(ξ)+f"(ξ)=0.
admin
2015-07-22
137
问题
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f(0)+[f
2
(0)]
2
=4.试证:在(一2,2)内至少存在一点ξ,使得f"(ξ)+f"(ξ)=0.
选项
答案
f(0)一f(一2)=2f’(ξ
1
),一2<ξ
1
<0, f(2)一f(0)=2f’(ξ
2
),0<ξ
2
<2.由|f(x)|≤1知|f’ (ξ
1
)(ξ
1
)|=[*] 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈[ξ
1
,ξ
2
][*](一2,2)上取到,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有:φ’ (ξ)=0,即 2f(ξ).f’(ξ)+2f’(ξ).f’(ξ)=0. 因为|f(x)|≤1,且φ(ξ)≥4,所以f’(ξ)≠0,于是有 f(ξ)+f"(ξ)=0,ξ∈(一2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/3MU4777K
0
考研数学三
相关试题推荐
2022年中央一号文件中提出,推动脱贫地区更多依靠()来巩固拓展脱贫攻坚成果,让脱贫群众生活更上一层楼。
依据《民法典》的规定,相互有继承关系的几个人在同一事件中丧生,不能确定死亡先后时间的,推定()。
党的十八大以来,党中央统筹国内国际两个大局,观大势、谋大事,加强外交顶层设计和战略谋划,开展一系列重大外交行动,提出许多重大对外战略思想,将大国、周边、发展中国家、多边工作密切结合,推动了与各方关系全面发展,打开了外交工作新局面,展示了我国外交新气象。我国
实践充分证明,人民代表大会制度是符合中国国情和实际、体现社会主义国家性质、保证人民当家作主、保障实现中华民族伟大复兴的好制度。在中国实行人民代表大会制度是
当地时间1月15日,美国总统特朗普在白宫椭圆形办公室会见中共中央政治局委员、国务院副总理、中美全面经济对话中方牵头人刘鹤,双方共同出席中美第一阶段经贸协议签署仪式。 刘鹤在协议签署仪式上表示,作为国际事务中负有重要责任的两个伟大国家,正视分歧、管控分歧
设β,α1,α2线性相关,β,α2,α3线性无关,则().
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
差分方程3yx+1-2yx=0的通解为_______.
随机试题
胰岛素的不良反应不包括
在找正工件轴线时,找正靠近卡盘端时,可用木槌或铜棒轻敲,找正远离卡盘端时,应用卡爪来调整。()
糖尿病病人失明最常见原因是
下列各项属于建筑物综合布线系统的子系统的有()。
期货从业人员违反《期货从业人员执业行为准则(修订)》,情节严重,并造成严重后果的()。
以个人是参与还是接受规范而将群体划分为()。
A公司是某省烟草公司直属的地级市公司,管辖11个县、区烟草公司,烤烟生产和卷烟销售并行发展,在国家现行烟草专卖体制下保持政企合一的管理体制。该公司近年来发展速度很快,每年利润增长率达到15%左右,是当地财政的主要支柱,年上缴税收占全市财政收入的1/4。
创造:历史
已知R0=0,R1=10000,R2=20000,指令ADDR0,R1,R2执行后,R0=【53】,R1=【54】。
Wehadamapbutitwasdifficulttofindthezoo.Althoughwehadamap,we____________________findthezooeasily.
最新回复
(
0
)