首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f(0)+[f2(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f"(ξ)+f"(ξ)=0.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f(0)+[f2(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f"(ξ)+f"(ξ)=0.
admin
2015-07-22
125
问题
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f(0)+[f
2
(0)]
2
=4.试证:在(一2,2)内至少存在一点ξ,使得f"(ξ)+f"(ξ)=0.
选项
答案
f(0)一f(一2)=2f’(ξ
1
),一2<ξ
1
<0, f(2)一f(0)=2f’(ξ
2
),0<ξ
2
<2.由|f(x)|≤1知|f’ (ξ
1
)(ξ
1
)|=[*] 令φ(x)=f
2
(x)+[f’(x)]
2
,则有φ(ξ
1
)≤2,φ(ξ
2
)≤2. 因为φ(x)在[ξ
1
,ξ
2
]上连续,且φ(0)=4,设φ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈[ξ
1
,ξ
2
][*](一2,2)上取到,则φ(ξ)≥4,且φ在[ξ
1
,ξ
2
]上可导,由费马定理有:φ’ (ξ)=0,即 2f(ξ).f’(ξ)+2f’(ξ).f’(ξ)=0. 因为|f(x)|≤1,且φ(ξ)≥4,所以f’(ξ)≠0,于是有 f(ξ)+f"(ξ)=0,ξ∈(一2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/3MU4777K
0
考研数学三
相关试题推荐
刑法修正案(十一)规定,已满()周岁不满()周岁的人,犯故意杀人、故意伤害罪,致人死亡或者以特别残忍手段致人重伤造成严重残疾,情节恶劣,经最高人民检察院核准追诉的,应当负刑事责任。
国家主席习近平2021年10月13日同德国总理默克尔举行视频会晤。他强调,中国和德国自身发展得好,对世界经济的贡献也更大。这证明,国与国之间完全可以避免(),实现互利共赢,这是中德关系应该牢牢把握的主基调。
2000年6月9日,江泽民在全国党校工作会议上第一次指出,“三个代表”重要思想所要回答和解决的是
1945年8月,蒋介石连发三电,邀请毛泽东赴重庆谈判。8月28日,毛泽东偕同周恩来、王若飞,在国民党政府代表张治中和美国驻华大使赫尔利陪同下,赴重庆与国民党当局进行谈判。这一行动证明,共产党
毛泽东在《新民主主义论》中提出了“新民主主义”的概念。他指出:“中国革命的历史特点是分为民主主义和社会主义两个步骤,而其第一步现在已不是一般的民主主义,而是中国式的、特殊的、新式的民主主义,而是新民主主义。”新民主主义理论的系统阐明标志着
恩格斯指出:“19世纪三大空想社会主义者的学说虽然含有十分虚幻和空想的性质,但他们终究是属于一切时代最伟大的智士之列的,他们天才地预示了我们现在已经科学地证明了其正确性的无数真理”。空想社会主义与科学社会主义的根本区别在于()。
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
求下列欧拉方程的通解:(1)x2y〞+3xyˊ+y=0;(2)x2y〞-4xyˊ+6y=x;(3)y〞-yˊ/x+y/xx=2/x;(4)x3y〞ˊ+3x2y〞-2xyˊ+2y=0;(5)x2y〞+xyˊ-4y=x3;(6)x
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
设周期为2π的周期函数f(x)在区间[-π,π)上的表达式为f(x)=e2x,试把它展开成傅里叶级数,并求级数的和.
随机试题
以下哪一种技术属于频谱多普勒技术
某患者,口干唇燥,大便燥结,不思饮食,干呕呃逆,面色潮红,甚则口糜,舌光红而干,脉细数。为
李某为了牟利,未经著作权人许可,私自复制了若干部影视作品的VCD,并以批零兼营等方式销售,销售金额为11万元,其中纯利润6万元。李某的行为构成何罪?
在下列情况中,可对所涉及土地使用权提前收回的是()。
有财产担保债权人对下列事项中,不享有表决权的是()。
认知疗法的基本治疗过程一般不包括以下哪一个?()
小学教师处理学生注意方面的性别差异应该()。
一切真知归根到底都来源于实践。人的知识不外乎直接经验和间接经验,直接经验和间接经验的关系是()
TheworkingplaceofJacksonwasfarawayfromhishome.Colindidn’twanttowritetheletterforJackson.
Listentopartofalectureinazoologyclass.Professor:Asyouknowfromthetextbook,mimicryisn’tlimitedtoinsects,but
最新回复
(
0
)