首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列微分方程的通解: (Ⅰ)y’’-3y’=2-6x; (Ⅱ)y’’+y=2cosx;(Ⅲ)y’’+4y’+5y=40cos3x.
求下列微分方程的通解: (Ⅰ)y’’-3y’=2-6x; (Ⅱ)y’’+y=2cosx;(Ⅲ)y’’+4y’+5y=40cos3x.
admin
2016-10-20
101
问题
求下列微分方程的通解:
(Ⅰ)y’’-3y’=2-6x; (Ⅱ)y’’+y=2cosx;(Ⅲ)y’’+4y’+5y=40cos3x.
选项
答案
(Ⅰ)先求对应齐次微分方程的通解,因其特征方程为λ
2
-3λ=λ(λ-3)=0,故通解为 y(x)=C
1
+C
2
e
3x
. 再求非齐次微分方程的特解,由于其自由项为一次多项式,而且0是特征方程的单根,所以特解应具形式y
*
(x)=x(Ax+B),代入原方程,得 [y
*
(x)]’’-3[y
*
(x)]’=2A-3(2Ax+B)=-6Ax+2A-3B=2-6x. 比较方程两端的系数,得[*] 解得A=1,B=0,即特解为y
*
(x)=x
2
.从而,原方程的通解为 y(x)=x
2
+C
1
+C
2
e
3x
,其中C
1
,C
2
为任意常数. (Ⅱ)由于对应齐次微分方程的特征方程为λ
2
+1=0,特征根为±i,所以其通解应为C
1
cosx+C
2
sinx;从而y’’+y=2cosx的特解应具形式:y
*
(x)=Axcosx+Bxsinx.代人原方程,可求得A=0,B=1,即y
*
(x)=xsinx.故原方程的通解为 y(x)=C
1
cosx+C
2
sinx+xsinx,其中C
1
,C
2
为任意常数. (Ⅲ)由于对应齐次微分方程的特征方程为λ
2
+4λ+5=0,特征根为-2±i,所以其通解应为e
-2x
(C
1
cosx+C
2
sinx).又因3i不是特征根,所以方程y’’+4y’+5y=40cos3x的特解应具有形式y
*
(*)=Acos3x+Bsin3x.代入原方程可得A=-1,B=3.这样就得到原方程的通解为 y(x)=e
-2x
(C
1
cosx+C
2
sinx)+3sin3x-cos3x,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/3ST4777K
0
考研数学三
相关试题推荐
[*]
[*]
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
一个班共有30名同学,其中有6名女生,假设他们到校先后次序的所有模式都有同样的可能性.求男生均比女生先到校的概率
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
用常数变易法求下列线性微分方程的通解:(1)y〞+y=secx,已知y1(x)=cosx是方程y〞+y=0的一个解;(2)(2x-1)y〞-(2x+1)yˊ+2y=0,已知y1(x)=ex是该方程的一个解;(3)x2y〞-2xyˊ+2y=2x3,已知
求下列微分方程的通解(1)xyˊ+y-2y3=0;(2)xyˊlnx+y=x(1+lnx);(3)yˊ+ex(1-e-y)=0;(4)yy〞-yˊ2-1=0.
求:微分方程y〞+y=-2x的通解.
随机试题
治寒疝疼痛、睾丸偏坠疼痛,宜用
N件产品中有M件次品,从中任取n件,则n件产品中恰有k件次品的概率为()。
为了加强各种危险作业的安全管理工作。保证各种危险作业过程中的安全,防止各类事故的发生,确保职工的人身安全,使财产不受损失,各种危险作业应实行作业审批制度。根据《企业安全生产标准化基本规范》(GB/T33000)的规定,下列作业需要实行审批制度的是(
某项目部对承建的重力式方块码头进行安装施工。问题:安装施工时应注意什么问题?
甲企业为增值税一般纳税人,生产市场畅销的C产品。其适用的增值税税率为17%,2015年度有关经济业务如下:(1)甲公司于2015年10月2日从乙公司购入一批生产物资L材料并已应验收入库。增值税专用发票上注明的该批物资的价款为1000万元,增值税税额170
下列选项中,不属于教学设计特点的是()。
教育心理学作为一门独立的学科,20世纪60年代到70年代末是其()。
下列行为中,不违反《道路交通安全法》的是()。
公文的密级按照程度由低到高排列依次为()。
说明:以CoyleTrade公司市场部经理王新的身份于2月26日给Brown先生写一封措辞严厉的催款信,信中应当包括以下内容:1.Brown先生已在150天前收到了第CK-69号合同项下的洗衣机,却拖欠货款,已过期120天;2.此间曾给
最新回复
(
0
)