首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列微分方程的通解: (Ⅰ)y’’-3y’=2-6x; (Ⅱ)y’’+y=2cosx;(Ⅲ)y’’+4y’+5y=40cos3x.
求下列微分方程的通解: (Ⅰ)y’’-3y’=2-6x; (Ⅱ)y’’+y=2cosx;(Ⅲ)y’’+4y’+5y=40cos3x.
admin
2016-10-20
90
问题
求下列微分方程的通解:
(Ⅰ)y’’-3y’=2-6x; (Ⅱ)y’’+y=2cosx;(Ⅲ)y’’+4y’+5y=40cos3x.
选项
答案
(Ⅰ)先求对应齐次微分方程的通解,因其特征方程为λ
2
-3λ=λ(λ-3)=0,故通解为 y(x)=C
1
+C
2
e
3x
. 再求非齐次微分方程的特解,由于其自由项为一次多项式,而且0是特征方程的单根,所以特解应具形式y
*
(x)=x(Ax+B),代入原方程,得 [y
*
(x)]’’-3[y
*
(x)]’=2A-3(2Ax+B)=-6Ax+2A-3B=2-6x. 比较方程两端的系数,得[*] 解得A=1,B=0,即特解为y
*
(x)=x
2
.从而,原方程的通解为 y(x)=x
2
+C
1
+C
2
e
3x
,其中C
1
,C
2
为任意常数. (Ⅱ)由于对应齐次微分方程的特征方程为λ
2
+1=0,特征根为±i,所以其通解应为C
1
cosx+C
2
sinx;从而y’’+y=2cosx的特解应具形式:y
*
(x)=Axcosx+Bxsinx.代人原方程,可求得A=0,B=1,即y
*
(x)=xsinx.故原方程的通解为 y(x)=C
1
cosx+C
2
sinx+xsinx,其中C
1
,C
2
为任意常数. (Ⅲ)由于对应齐次微分方程的特征方程为λ
2
+4λ+5=0,特征根为-2±i,所以其通解应为e
-2x
(C
1
cosx+C
2
sinx).又因3i不是特征根,所以方程y’’+4y’+5y=40cos3x的特解应具有形式y
*
(*)=Acos3x+Bsin3x.代入原方程可得A=-1,B=3.这样就得到原方程的通解为 y(x)=e
-2x
(C
1
cosx+C
2
sinx)+3sin3x-cos3x,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/3ST4777K
0
考研数学三
相关试题推荐
[*]
一个袋子中装有5个红球,3个白球,2个黑球,从中任取3个球,求其中恰有一个红球、一个白球和一个黑球的概率.
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
假设三个直角坐标面都镶上了反射镜,并将一束激光沿向量a=(ax,ay,ax)的方向射向xOy平面,试用反射定律证明:反射光束的方向向量b=(ax,-ay,az);进而推出:入射光束经三个镜面连续反射后,最后所得的反射光束平行于入射光束.(航天工程师利用此原
设f(x)=ln10x,g(x)=x,h(x)=ex/10,则当x充分大时有
差分方程yt+1-yt=t2t的通解为_________.
设f(t)连续并满足f(t)=cos2t+∫0xf(t)sinsds,求f(t)。
随机试题
动物见到食物就引起唾液分泌,这属于
易侵犯人体上部和肌腠的外邪是
A.咀嚼痛B.自发性隐痛,冷热刺激痛C.放射性锐痛D.阵发性电击样痛E.张口闭口痛下述疾病最可能表现出上述哪一种性质的疼痛急性根尖周炎
为了对各种不同类别的危险物质可能出现的事故严重度进行评价,根据()原则建立了物质子类别同事故形态之间的对应关系,每种事故形态用一种伤害模型来描述。
根据现行《建筑安装工程费用项目组成》(建标[2013]44号),教育费附加应计入建筑安装工程的()。
下面哪一种风险不是系统风险()。
我国最基层的群众性自治组织是()。
从A地到B地的道路如图所示,所有转弯均为直角,问如果要以最短距离从A地到达B地,有多少种不同的走法可以选择?()
现代科技中,()是通过受激发射而实现光波放大。
在我国,_________是专门的法律监督机关。
最新回复
(
0
)