首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(μ,ν)具有连续的二阶偏导数,f(1,1)=2是f(μ,ν)的极值,已知z=f[(x+y),f(x,y)]。求。
已知函数f(μ,ν)具有连续的二阶偏导数,f(1,1)=2是f(μ,ν)的极值,已知z=f[(x+y),f(x,y)]。求。
admin
2019-05-11
64
问题
已知函数f(μ,ν)具有连续的二阶偏导数,f(1,1)=2是f(μ,ν)的极值,已知z=f[(x+y),f(x,y)]。求
。
选项
答案
因为[*]=f
1
’
[(x+y),f(x,y)]+f
2
’
[(x+y),f(x,y)].f
1
’
(x,y), 所以 [*]=f
11
’’
[(x+y),f(x,y)]+f
12
’’
[(x+y),f(x,y)].f
2
’
(x,y)+f
21
’’
[(x+y),f(x,y)].f
1
’
(x,y)+f
22
’’
[(x+y),f(x,y)].f
2
’
(x,y).f
1
’
(x,y)+f
2
’
[(x+y),f(x,y)].f
12
’’
(x,y), 又因为f(1,1)=2是f(μ,ν)的极值,故f
1
’
(1,1)=0,f
2
’
(1,1)=0。因此 [*]=f
11
’’
(2,2)+f
12
’’
(2,2).f
2
’
(1,1)+f
21
’’
(2,2).f
1
’
(1,1)+f
22
’’
(2,2).f
2
’
(1,1).f
1
’
(1,1)+f
2
’
(2,2).f
12
’’
(1,1)=f
11
’’
(2,2)+f
2
’
(2,2).f
12
’’
(1,1)。
解析
转载请注明原文地址:https://kaotiyun.com/show/3fV4777K
0
考研数学二
相关试题推荐
设u=u(χ,y,z)连续可偏导,令(1)若=0,证明:u仅为θ与φ的函数.(2)若,证明:u仅为r的函数.
设f(χ)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
设方程组有无穷多个解,为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.(1)求A;(2)求|A3+3E|.
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P(X>uα)=α,若使等式P(|X|<x)=0.95成立,则x=()
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
函数f(x)=在[-π,π]上的第一类间断点是x=()
微分方程y"-4y’+8y=e2x(1+cos2x)的特解可设为y*=()
求一块铅直平板如图3-1所示在某种液体(比重为y)中所受的压力.
随机试题
佝偻病初期的临床表现是
下面哪个不属于市场调查的资料收集方法?
房屋转租除必须符合一般房屋租赁的必要条件外,还应注意的几点是()。
(2008年)如图5—19所示,左端固定的直杆受扭转力偶作用,在截面1—1和2—2处的扭矩为()。
作为一切市场的基础,对其他各类市场具有决定性的是()。
甲状腺功能亢进手术治疗的适应证是()。
根据以下情境材料。回答下列问题。为进一步实施“民意主导警务”战略,优化执法服务,某县公安局打算开展一次人民群众满意度调查活动,真实了解群众对公安工作及队伍建设的满意程度,查找公安机关执法服务中存在的不足,逐项落实整改措施。关于开展群众安全感满意度调查
无论赤县也好神州也好中国也好,变来变去,______仓颉的灵感不灭,美丽的中文不老,那形象,那磁石一般的向心力当然长在。______一个方块字是一个天地。太初有字,于是汉族的心灵,祖先的回忆和希望便有了寄托,譬如凭空写一个“雨”字,点点滴滴,滂滂沱沱,淅淅
1999年冬季,前卫商场大量销售皮衣,谎称自己销售价是“跳楼价”。下列表述哪些是正确的?()
根据以下资料,回答问题。2006—2013年间,四川省粮食总产量从哪一年开始突破3000万吨?
最新回复
(
0
)