首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值和特征向量. (2)求矩阵B.
设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值和特征向量. (2)求矩阵B.
admin
2017-07-26
36
问题
设3阶对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值和特征向量.
(2)求矩阵B.
选项
答案
(1)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
, 进一步 A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故 α
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
—4A
3
α
1
+α
1
=α
1
—4α
1
+α
1
=一2α
1
, 从而α
1
是矩阵B的属于特征值一2的特征向量. 由B=A
5
一4A
3
+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=一2,得B的3个特征值为 μ
1
=一2,μ
2
=1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又因为A是对称矩阵,得B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即 α
1
,α
2
=0,α
1
,α
3
—0, 所以α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解: [*] 其中k
1
是不为零的任意常数,k
2
,k
3
是不同时为零的任意常数. (2)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/3gH4777K
0
考研数学三
相关试题推荐
设每天生产某种商品q单位时的固定成本为20元,边际成本函数Cˊ(q)=0.4q+2元/件.求成本函数C(q).如果该商品的销售价为18元/件,并且所有产品都能够售出,求利润函数L(q),并问每天生产多少件产品时才能获得最大利润?
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
求以曲线为准线,以原点O(0,0,0)为顶点的锥面方程.
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
已知三元二次型xTAx=x12+x22+x32+2x1x3+2ax1x3+2x2x3的秩为2,则其规范形为_________.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,l,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设f(x)在[a,b]上连续且单调增加,试证:
x)在(一∞,+∞)上连续,且f(x)=∫0xf(t)出,试证:f(x)=0(-∞<x<+∞).
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
随机试题
A.CAl25B.AFPC.hCGD.LDHE.CA19—9卵巢无性细胞瘤较好的肿瘤标记物为
关于消毒剂的投加,下列不符合《医院污水处理设计规范》(CECS07—2004)的说法是()。
()是世界银行集团成员之一。宗旨是促进发展中国家私营部门投资。
劳动合同期满或者当事人约定的劳动合同终止条件出现,劳动合同()。
全面结算会员期货公司的期货保证金账户应当与其自有资金账户相互独立、分别管理。( )
围绕组织目标,制定实施方案,在政府管理运行中所处在的阶段为()。
写作信息文稿时,要求行文要庄重,那么下列说法叙述不恰当的是()。
管理技能包括哪些?并结合管理者层次分析管理技能的重要性。
维果茨基认为,教学必须与儿童的发展相适应,因而不能超越儿童的发展。
A、Hewouldlosehislife.B、Hewouldloseanear.C、Hewouldloseallhissalt.D、Hewouldloseaneye.BInthe16thcenturywha
最新回复
(
0
)