首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值和特征向量. (2)求矩阵B.
设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值和特征向量. (2)求矩阵B.
admin
2017-07-26
27
问题
设3阶对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值和特征向量.
(2)求矩阵B.
选项
答案
(1)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
, 进一步 A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故 α
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
—4A
3
α
1
+α
1
=α
1
—4α
1
+α
1
=一2α
1
, 从而α
1
是矩阵B的属于特征值一2的特征向量. 由B=A
5
一4A
3
+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=一2,得B的3个特征值为 μ
1
=一2,μ
2
=1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又因为A是对称矩阵,得B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即 α
1
,α
2
=0,α
1
,α
3
—0, 所以α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解: [*] 其中k
1
是不为零的任意常数,k
2
,k
3
是不同时为零的任意常数. (2)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/3gH4777K
0
考研数学三
相关试题推荐
n阶方阵(一∞,0)U(0,+∞),当a≠b且a≠一(n一1)b时,秩A=_____
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
随机试题
设f(x)在(a,b)上连续,若有数列xn→a,yn→a(n→∞),xn,yn∈(a,b),使得存在,则对A与B之间的任意数μ,必可找到数列zn→a(n→∞),使f(zn)=μ.
A所有不良反应B新的不良反应C严重的不良反应D新的和严重的不良反应E罕见的不良反应《药品不良反应报告和监测管理办法》规定:新药监测期已满的药品报告
有关紫癜正确的是
蛋白质消化的最主要消化液是小肠液。()
我国居民刘某,于2011年2月取得收入的明细情况如下所示:(1)取得劳务报酬收入60000元。(2)取得银行存款利息收入8000元;国库券利息收入2000元。(3)取得稿酬收入20000元。(4)通过我国的某国家机关,刘某以个人名义向四川的
陈某用自己的轿车作抵押向银行借款40万元,并办理了抵押登记手续。陈某驾驶该车出行时,不慎发生交通事故。经鉴定,该车的价值损失了30%,保险公司赔偿了该车损失,根据合同法律制度的规定,下列关于该抵押担保的表述中,正确的有()。
WhatisMs.Parson’scurrentposition?
TheFDAmayrescinditsapprovalofAvastin,acolon-cancerdrug.Ifthesummerof2009wastheseasonof"deathpanels,"as
FindingPeaceofMindItisn’talwayseasytofindpeacewhenyou’vebecomeupset./Thecauseofourstressorangeristha
Spaceisadangerousplace,notonlybecauseofmeteors(流星)butalsobecauseofraysfromthesunandotherstars.Theatmosphe
最新回复
(
0
)