首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量△y=,且y(0)=π,则y(1)=______.
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量△y=,且y(0)=π,则y(1)=______.
admin
2018-06-27
41
问题
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量△y=
,且y(0)=π,则y(1)=______.
选项
答案
[*]
解析
首先尝试从△y的表达式直接求y(1).为此,设x
0
=0,△x=1,于是△y=y(x
0
+△x)-y(x
0
)=y(1)-y(0)=y(1)-π,代入△y的表达式即得
y(1)-π=π+α
y(1)=2π+α.
由于仅仅知道当△x→0时α是比△x较高阶的无穷小,而不知道α的具体表达式,因而从上式无法求出y(1).
由此可见,为了求出y(1)必须去掉△y的表达式中包含的α.利用函数的增量△y与其微分dy的关系可知,函数y(x)在任意点x处的微分
这是一个可分离变量方程,它满足初始条件y|
x=0
=π的特解正是本题中的函数y(x),解出y(x)即可得到y(1).
将方程
分离变量,得
求积分可得
由初始条件y(0)=π可确定
转载请注明原文地址:https://kaotiyun.com/show/3ik4777K
0
考研数学二
相关试题推荐
设n阶方阵A的伴随矩阵为A*,且|A|=a≠0,则|A*|等于
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
求微分方程y"-2y’=e2x满足条件y(0)=1,y’(0)=1的解.
已知曲线在直角坐标系中由参数方程给出:证明该方程确定连续函数y=y(x),x∈[0,+∞);
已知矩阵若A+kE正定,求k的取值.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A*一6E的秩.
下列矩阵中属于正定矩阵的是
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
随机试题
A、TheEnglish.B、TheDutch.C、AmericanIndians.D、BlacksfromAfrica.C
A.发热、流涕、鼻塞、咽痛、咽充血B.发热、咽痛、咽充血,咽部有灰白色小丘疹、疱疹或溃疡C.发热、咽痛、颈部、耳后淋巴结可肿大,咽充血、眼结膜充血D.发热、音哑、犬吠样咳嗽,吸气性呼吸困难,咽充血E.发热、咽痛、咽充血,扁桃体肿大,有脓性分泌物
飞龙股份有限公司申请股票上市交易需具备哪些条件?按照《公司法》的规定,飞龙公司是否具备发行新股的条件?
某国2004年经济增长率为8%,其中总资本投入量的增长与总劳动投入量的增长均为4%,资本和劳动力对经济增长贡献的权数均为0.5,则全要素生产率(TFP)为()。
《城市给水工程规划规范》中关于城市给水工程规划的主要内容,下列说法正确的是()。
浇筑混凝土时为避免发生离析现象,混凝土自高处倾落的自由高度一般不应超过()米.
防烟排烟系统的安装主要包括风管、阀门组件和风机等主要设备的安装检测与调试。下列关于风管的安装与检测,错误的是()。
与单一法人客户相比,()不是集团法人客户的信用风险具有的特征。
在德育的模式中,同时涉及两种道德规范不可兼得的情境或问题叫做__。
ThreefactorscontributetothemiraculousspreadofEnglish【C1】______aninternationallanguage:Englishusageinscience,te
最新回复
(
0
)