首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-1,1)内具有二阶连续导数且f"(x)≠0,试证: (1)对于(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立; (2).
设f(x)在(-1,1)内具有二阶连续导数且f"(x)≠0,试证: (1)对于(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立; (2).
admin
2014-01-27
73
问题
设f(x)在(-1,1)内具有二阶连续导数且f"(x)≠0,试证:
(1)对于(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
(2)
.
选项
答案
(1)直接用拉格朗日中值定理即可得存在性,用单调性判断唯一性; (2)由[*],可得[*],也可用f(x)二阶泰勒展开式,并与(1)中已有的结果进行对比推导.
解析
转载请注明原文地址:https://kaotiyun.com/show/tG34777K
0
考研数学二
相关试题推荐
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
设Dk是圆域D={(x,y)|x2+y2≤1}在地k象限的部分,记Ik=(k=1,2,3,4),则
(94年)设A=有3个线性无关的特征向量,求χ和y应满足的条件.
(2006年)证明:当0<a<b<π时,bsinb+2cosb+bπ>asina+2cosa+πa.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_______.
(91年)问λ取何值时,二次型f=χ12+4χ22+4χ32+2λ1χ2-2χ1χ3+4χ2χ3为正定二次型?
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
已知函数y=f(x)在(一∞,+∞)上具有二阶连续的导数,且其一阶导函数f′(x)的图形如图3-1所示,则曲线y=f(x)的下凸(或上凹)区间为__________.
设连续函数f(x)满足方程求f(x).
设f(x)二阶可导,且f(0)=0,令g(x)=(Ⅰ)确定a的取值,使得g(x)为连续函数;(Ⅱ)求g’(x)并讨论函数g’(x)的连续性。
随机试题
A.热毒证B.暑湿证C.暑热证D.湿热证E.阴暑证香薷散的主治病证是
A.阴茎套B.宫内节育器C.复方短效口服避孕药D.绝育术E.安全期避孕绝经过渡期避孕方法不应选用
痛风可分为()两种类型
适用于二级和二级以下公路的粒料类基层有()。
下列有关质量事故调查的说法正确的是()。
导致水体富营养化的物质包括()。
期货交易具有( )的特点,吸引了众多投机者的参与。
基金分类的意义在于()。
可以计算其利润的组织单位才是真正意义上的利润中心。()
根据下面材料回答下列题。2010年大陆地区总人口性别比例(以男性人口为100,男性对女性的比例)为()。
最新回复
(
0
)