首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
admin
2014-02-05
58
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,其中α
1
,α
2
,α
3
,α
4
是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)
T
,证明α
2
,α
3
,α
4
是齐次方程组A
*
x=0的基础解系.
选项
答案
由解的结构知n—r(A)=1,故秩r(A)=3.又由[*]得α
1
一3α
3
+2α
4
=0.因A
*
A=|A|E=0,即A
*
(α
1
,α
2
,α
3
,α
4
)=0,故α
2
,α
3
,α
4
都是A
*
x=0的解.由α
1
=3α
3
—2α
4
与r(A)=3有A=(α
1
,α
2
,α
3
,α
4
)=(3α
3
—2α
4
,α
2
,α
3
,α
4
)→(0,α
2
,α
3
,α
4
),可知α
2
,α
3
,α
4
线性无关.由r(A)=3得r(A
*
)=1,那么n一r(A
*
)=3.综上可知,α
2
,α
3
,α
4
是A
*
x=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/9U34777K
0
考研数学二
相关试题推荐
(09年)设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,和S2分别为样本均值和样本方差.记统计量T=-S2,则ET=_______.
(07年)设函数f(χ),g(χ)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ
(2005年)求
[2013年]矩阵相似的充分必要条件为().
设α1,α2,…,α3均为n维列向量,A是m×n矩阵,下列选项正确的是【】
(2009年)幂级数的收敛半径为______.
设n为正整数,y=yn(x)是微分方程xy’-(n+1)y=0满足条件yn(1)=1/1/[n(n+1)]的解.求级数的收敛域及和函数.
设X~N(0,1),Y=X+|X|,Y的分布函数为FY(y),则FY(y)间断点的个数为()
设随机变量X的概率密度为,其中a,b为常数.记Φ(x)为N(0,1)的分布函数.若在x=1处f(x)取得最大值,则P{1-<X<1+}=()
某人向银行贷款购房,贷款A0(万元),月息r,分n个月归还,每月归还贷款数相同,为A(万元)(此称等额本息还贷,目前各银行都采用这个办法还贷).设至第t个月,尚欠银行yt(万元).(Ⅰ)试建立yt关于t的一阶差分方程并求解;(Ⅱ)利用t=n时yt=0,
随机试题
特发性肺纤维化肺功能的特点是
设备承揽合同承揽人的义务为()。
下列关于其他项目清单计价表的叙述中,正确的是()。
按《注册建造师执业管理办法(试行)》规定,不属于机电工程注册建造师执业工程范围的是()等安装工程。
根据保险法律制度的规定,下列关于不定值保险合同的说法中正确的是()。
打击是社会治安综合治理的(),是落实综合治理其他措施的前提条件。
We’vebeenhavingthewrongdiscussionaboutglobalization.【F1】Foryears,we’vearguedoverwhetherthisorthatindustryandit
已知英文大写字母D的ASCII码的值是44H,那么英文字母G的ASCII码的值为十进制数
A、 B、 C、 D、 C图片上看不到(A)所提到的电脑屏幕,而且也不是(B)所说的购物场景。另外,也不像(D)所说的那样在买什么东西,所以正确答案是(C)。
TaskOne—Theindustriestheyreported•Forquestions13-17,matchtheextractswiththeindustries,listedA-H.•Foreach
最新回复
(
0
)