首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
admin
2014-02-05
57
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,其中α
1
,α
2
,α
3
,α
4
是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)
T
,证明α
2
,α
3
,α
4
是齐次方程组A
*
x=0的基础解系.
选项
答案
由解的结构知n—r(A)=1,故秩r(A)=3.又由[*]得α
1
一3α
3
+2α
4
=0.因A
*
A=|A|E=0,即A
*
(α
1
,α
2
,α
3
,α
4
)=0,故α
2
,α
3
,α
4
都是A
*
x=0的解.由α
1
=3α
3
—2α
4
与r(A)=3有A=(α
1
,α
2
,α
3
,α
4
)=(3α
3
—2α
4
,α
2
,α
3
,α
4
)→(0,α
2
,α
3
,α
4
),可知α
2
,α
3
,α
4
线性无关.由r(A)=3得r(A
*
)=1,那么n一r(A
*
)=3.综上可知,α
2
,α
3
,α
4
是A
*
x=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/9U34777K
0
考研数学二
相关试题推荐
(91年)设有3维列向量问λ取何值时(1)β可由α1,α2,α3线性表示,且表达式唯一?(2)β可由α1,α2,α3线性表示,但表达式不唯一?(3)β不能由α1,α2,α3线性表示?
(04年)设级数+…(-∞<χ<+∞)的和函数为S(χ).求:(Ⅰ)S(χ)所满足的一阶微分方程;(Ⅱ)S(χ)的表达式.
[2012年]设当实数a为何值时,方程组AX=β有无穷多解,并求其通解.
(1998年)设有两条抛物线记它们交点的横坐标的绝对值为an。(I)求这两条抛物线所围成的平面图形的面积Sn;(Ⅱ)求级数的和。
(09年)使不等式>lnχ成立的χ的范围是【】
(08年)设f(χ)是周期为2的连续函数.(Ⅰ)证明对任意的实数t,有∫tt+2f(χ)dχ=∫02f(χ)dχ;(Ⅱ)证明G(χ)=∫0χ[2f(t)-∫tt+2f(s)ds]dt是周期为2的周期函数.
设函数则判断f′(x)在x=0处是否可导.
给定两个正项级数Un及Vn,已知=ρ,当ρ=()时,不能判断这两个正项级数同时收敛或同时发散.
设f(x)在[a,b]上可导,F(x)=f(x)-x,若F(x)在x=a处取得最小值,在x=b处取得最大值,则()
A、c-2mB、mC、cmD、c3mB由故选(B).
随机试题
在D盘下新建一个Excel工作簿,完成以下操作:(1)在Sheet1工作表的A1:H6区域中建立和编辑如表所示的数据表。(2)设置“班级学习成绩表”为居中、加粗、字号20,“高一”、“高二”和“高三”为居中、加粗、字号16,各班级标题居中、加粗,其余
静脉回流的影响因素,包括
类风湿关节炎最早侵犯的关节是
某城市小学投资700万元建设教学楼,组织工程施工公开招标,招标文件规定投标人应具备的资格条件中,正确合理的是()。
根据《测绘法》,省、自治区、直辖市和自治州、县、自治县、市行政区域界线的标准画法图,由()拟订,报国务院批准后公布。
在下列给出的投资方案评价方法中,可用于计算期不同的互斥型方案评价的动态方法是()。
Whatdoesthefutureholdfortheproblemofhousing?Agood(1)_____depends,ofcourse,onthemeaningof"future".Ifoneis
现代计算机中采用二进制码,下列选项中不是它的优点是
Thecurrentadministration,beingworriedoversomeforeigntradebarriersbeingremovedandourexportsfailingtoincreaseas
NicholasChauvin,aFrenchsoldier,airedhisvenerationofNapoleonBonaparteso______andunceasinglythathebecamethelaug
最新回复
(
0
)