首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4×5矩阵A=(α1,α2,α3,α4,α5),其中α1,α2,α3,α4,α5均为四维列向量,α1,α2,α4线性无关,又设α3=α1一α4,α5=α1+α2+α4,β=2α1+α2一α3+α4+α5,求Ax=β的通解。
已知4×5矩阵A=(α1,α2,α3,α4,α5),其中α1,α2,α3,α4,α5均为四维列向量,α1,α2,α4线性无关,又设α3=α1一α4,α5=α1+α2+α4,β=2α1+α2一α3+α4+α5,求Ax=β的通解。
admin
2017-07-10
48
问题
已知4×5矩阵A=(α
1
,α
2
,α
3
,α
4
,α
5
),其中α
1
,α
2
,α
3
,α
4
,α
5
均为四维列向量,α
1
,α
2
,α
4
线性无关,又设α
3
=α
1
一α
4
,α
5
=α
1
+α
2
+α
4
,β=2α
1
+α
2
一α
3
+α
4
+α
5
,求Ax=β的通解。
选项
答案
由于α
1
,α
2
,α
4
线性无关,α
3
=α
1
一α
4
,α
5
=a
1
+a
2
+a
4
,所以r(A)=3。由已知条件β=2α
1
+α
2
一α
3
+α
4
+α
5
,从而线性方程组Ax=β有特解η=(2,1,一1,1,1)
T
。由α
3
=α
1
一α
4
,α
5
=α
1
+α
2
+α
4
,可知导出组Ax=0的两个线性无关的解为ξ
1
=(1,0,一1,一1,0)
T
,ξ
2
=(1,1,0,1,一1)
T
。由r(A)=3,可知齐次线性方程组Ax=0的基础解系由两个线性无关的解构成,故ξ
1
,ξ
2
为Ax=0的基础解系,方程组Ax=β的通解为x=η+k
1
ξ
1
+k
2
ξ
2
,其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/3lt4777K
0
考研数学二
相关试题推荐
设一矩形面积为A,试将周长S表示为宽x的函数,并求其定义域。
若f(x)是连续函数,证明
A、 B、 C、 D、 DC也明显不对,因为“无穷小无穷大”是未定型,极限可能存在也可能不存在.
证明:
求积分的值:
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
求极限.
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
求下列极限:
没ρ=ρ(x)是抛物线上任一点M(x,y)(x≥1)的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算的值.(在直角坐标系下曲率公式为
随机试题
关于先天性心脏病,错误的是
以下哪支静脉不属于门静脉属支
关于横向弛豫的叙述,错误的是
患者,男性,52岁,患肝炎后肝硬化已5年,近日因腹围增大就诊。查体腹水征(+),查血红细胞3.00×1012/L,白细胞3.5×109/L,血小板65×109/L,大便潜血试验(+),腹水化验为渗出液,每日尿量500ml,血尿素氯及血肌酐均高。腹水化验
在教学过程中师生双方为实现一定的教学目的、完成一定的教学任务而采取的教与学相互作用的活动方式称之为()。
加强党的执政能力建设的历史动力是()。
王某将自家三层楼房的承建工程承包给没有施工资质的包工头李某。双方合同约定,李某“包工不包料”,在施工过程中产生的一切责任由李某承担。李某找来邻居张某帮工,工资100元/天。施工过程中脚手架倒塌,将在地面上递砖块的张某压成重伤。张某要求包工头李某赔偿医药费、
2008年对主要国家和地区货物进出口贸易逆差额(进口额一出口额)最大的国家(地区)是()。
阅读以下叙述,回答问题【说明】某单位甲建设数据中心管理系统,与乙公司签订了单价建设合同,与丙公司签订了监理合同。建设合同中规定:系统提供的网络宽带不低于2Mb/s,操作响应时间不超过5秒,可支持的最大并发用户数不少于5000个。乙公司项目
在数据库技术中使用数据模型的概念来描述数据库的结构和语义。数据模型有概念数据模型和结构数据模型两类,实体联系模型(E-R模型)是【】数据模型。
最新回复
(
0
)