首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
专升本
判断下列函数在定义域内的有界性及单调性: (1) (2))y=x+lnx.
判断下列函数在定义域内的有界性及单调性: (1) (2))y=x+lnx.
admin
2021-08-18
44
问题
判断下列函数在定义域内的有界性及单调性:
(1)
(2))y=x+lnx.
选项
答案
(1)函数的定义域为(-∞,+∞),当x≤0时,有[*];当x>0时,有[*]. 故[*]x∈(-∞,+∞)有y≤1/2,即函数),[*]有上界. 又因为函数[*]为奇函数,所以函数的图形关于原点对称.由对称性及函数有上界知,函数必有下界.因而函数[*]有界. 又由y
1
-y
2
=[*]知,当x
1
>x
2
且x
1
x
2
<1时,y
1
>y
2
; 而当x
1
>x
2
且x
1
x
2
>1时,y
1
<y
2
. 故函数[*]在定义域内不单调. (2)函数的定义域为(0,+∞). 因为[*]且x
1
>M;[*]x
1
>e
M
>0,使lnx
2
>M.取x
0
=max{x
1
,x
2
},则有x
0
+lnx
0
>x
1
+Inx
2
>2M>M.所以函数y=x+lnx在定义域内是无界的. 又当0<x
1
<x
2
时,有x
1
-x
2
<0,lnx
1
-lnx
2
<0,故y
1
-y
2
=(x
1
+lnx
1
)-(x
2
+lnx
2
)=(x
1
-x
2
)+(lnx
1
-lnx
2
)<0,即当O<x
1
<x
2
时,恒有y
1
<y
2
,所以函数y=x+lnx在(0,+∞)内单调增加.
解析
转载请注明原文地址:https://kaotiyun.com/show/3rQC777K
本试题收录于:
数学题库普高专升本分类
0
数学
普高专升本
相关试题推荐
设有界闭区域D由分段光滑曲线L所围成,L取正向,函数P(x,y),Q(x,y)在D上具有一阶连续偏导数,则ο∫LPdx+Qdy=()
设函数f(x)=(x≠0),则f(ln2)=_______.过曲线y:e-2x上的一点(0,1)的切线方程为_______.
曲线y=ax2(a≥0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形,问:a为何值时此平面图形绕x轴旋转一周而成的旋转体的体积最大?
窗子的上半部分为半圆,下半部分是矩形,如果窗子的剧长L固定,问当圆的半径r取何值时,窗子的面积最大?
当λ为何值时,方程组有解,并求其通解。
方程组当a,b为何值时,方程组无解?有唯一解?有无穷多解?
设函数f(x)=,问a为何值时,f(x)在(一∞,+∞)内连续?
把一根长为a的铅丝切成两段,一段围成圆形,一段围成正方形,问这两段铅丝各多长时,圆形面积与正方形面积之和最小。
设曲线y=x2(0≤x≤1),问t为何值时,图中的阴影部分面积S1与S2之和S1+S2最小。
随机试题
女,35岁,在甲状腺次全切除后4小时,突感呼吸困难、颈部肿胀,口唇发绀,紧急处理第一步应()。
A.舌后坠B.脑脊液漏C.张口过度D.复视E.后牙早接触,前牙开双侧颏孔区骨折可出现
根据相关司法解释的规定,对于有可能通过调解解决的民事案件,人民法院应当调解。但对于下列哪些案件,人民法院不予调解?()
“空想社会主义”对现代化城市规划的形成,起到了重要作用,下列对“空想社会主义”的描述不正确的是()
【背景资料】某城市轨道交通工程项目,在施工过程中,项目经理部对施工阶段的质量控制措施摘录如下:(1)单位工程、分部工程和分项工程开工前,施工负责人向分包方全体人员进行书面技术交底。(2)项目经理对管理工程师提出的设计变更要求在
管理的自然属性主要取决于()。
在VisualFoxPro中,基类的最小事件集为Init、Destroy和______。
WhenhisplanetoucheddownatMontreal’sinternationalairport,DavidLaRochecollectedhisluggageandheadedfortheairport
Mr.MikeSmith:Itwasn’taneasydecision,butwe’vebeenaskingforadecentwageforyears.Nowatlastpeoplearebegi
TheThree-YearSolutionHartwickCollege,asmallliberal-artsschoolinupstateNewYork,makesthisoffertowell-prepared
最新回复
(
0
)