首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设η为非齐次线性方程组Ax=b的一个解,ξ1,ξ2,…,ξr,是其导出组Ax=0的一个基础解系,证明η,ξ1,ξ2,…,ξr,线性无关.
设η为非齐次线性方程组Ax=b的一个解,ξ1,ξ2,…,ξr,是其导出组Ax=0的一个基础解系,证明η,ξ1,ξ2,…,ξr,线性无关.
admin
2014-10-27
48
问题
设η为非齐次线性方程组Ax=b的一个解,ξ
1
,ξ
2
,…,ξ
r
,是其导出组Ax=0的一个基础解系,证明η,ξ
1
,ξ
2
,…,ξ
r
,线性无关.
选项
答案
证一:因为ξ
1
,ξ
2
,…,ξ
r
,是Ax=0的基础解系.所以ξ
1
,ξ
2
,…,ξ
r
,线性无关,若η,ξ
1
,ξ
2
,…,ξ
r
,线性无关,则η必可由ξ
1
,ξ
2
,…,ξ
r
,线性表出,从而η为Ax=0的解,这与叩为Ax=b的解矛盾,故η,ξ
1
,ξ
2
,…,ξ
r
,线性无关; 证二(反正法):若η,ξ
1
,ξ
2
,…,ξ
r
,线性相关,则存在不全为零的数l,k
1
,k
2
,…,k
r
使lη+k
1
ξ
1
+k
2
ξ
2
+…+k
r
ξ
r
=0.若l≠0,则 [*] 即η可以由ξ
1
,ξ
2
,……ξ
r
线性表出,由此可得η为Ax=0的解,与已知矛盾,故l=0.从而k
1
,k
2
,…,k
r
不全为零,使k
1
ξ
1
+k
2
ξ
2
+……k
r
ξ
r
=0,这表明ξ
1
,ξ
2
,……ξ
r
线性相关,与ξ
1
,ξ
2
,……ξ
r
为Ax=0的基础解系矛盾.所以η,ξ
1
,ξ
2
,……ξ
r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/3vyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
这是一段什么描写?有什么作用?“傅雷则主张非但要达意,还要求传神”,这表现了傅雷什么性格特点?
阅读下面段落,按要求回答问题。母令与少女同寝止。昧爽即来省问,操女红精巧绝伦。但善笑,禁之亦不可止;然笑处嫣然,狂而不损其媚,人皆乐之。邻女少妇,争承迎之。母择吉为之合卺,而终恐为鬼物。窃于日中窥之,形影殊无少异。至日,使华装行新妇礼;女笑极不
结庐在人境。而无车马喧。问君何能尔?心远地自偏。采菊东篱下,悠然见南山。山气日夕佳。飞乌相与还。此中有真意,欲辩已忘言。本诗的风格特征是什么?
阿尔贝特.爱因斯坦,20世纪最伟大的科学家,提出______等理论,他的质能方程E=mc2已由原子弹、氢弹的威力得到确证。《我的世界观》选自______。
小说《苦恼》中展示了“人与人”之间的关系,也展示了“人与马”之间的关系。这两方面构成了()
与“养民”治国构成类比关系的种树原理是
已知线性方程组讨论λ为何值时,方程组无解、有惟一解、有无穷多个解.
求矩阵的全部特征值和特征向量.
求解非齐次线性方程组(要求用它的一个特解和导出组的基础解系表示)
用正交变换将二次型f(x1,x2,x3)=2x12+2x22+2x32一2x1x2一2x1x3一2x2x3化为标准型并写出正交变换.
随机试题
下列的英文缩写和中文名字的对照中,正确的是()。
在Python中,str1=”jiaoshiexample…wow!!!”,str2=”exam”,执行print(str1.find(str2))语句后的输出结果是()。
税法和会计的主要差异在于
A、 B、 C、 D、 A
下列不符合髓样癌特征的是
根据《招标投标法》,下列关于招标投标的说法中,正确的有()。
宏观经济学的总量分析方法是()的分析方法。
∫01=___________.
软件按功能可以分为:应用软件、系统软件和支撑软件(或工具软件)。下面属于应用软件的是
Irememberthewaythelighttouchedherhair.Sheturnedherhead,andoureyesmet,amomentaryawarenessinthatraucousfift
最新回复
(
0
)