首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 设矩阵则A与B( ).
[2007年] 设矩阵则A与B( ).
admin
2021-01-25
35
问题
[2007年] 设矩阵
则A与B( ).
选项
A、合同且相似
B、合同但不相似
C、不合同但相似
D、既不合同又不相似
答案
B
解析
解一 易求得|λE-A|=λ(λ-3)
2
,故A的特征值为3,3,0,而B的特征值为1,1,0,它们不相同,但正特征值个数相同,且秩(A)=秩(B)=2,故A与B不相似,但合同.仅(B)入选.
解二 由命题2.5.3.3(4)知,如A与B相似,则tr(A)=tr(B),但tr(A)=2+2+2=6≠tr(B)=1+1+0=2,故A与B不相似.
由于A的特征值为3,3,0,而B的特征值为1,1,0,X
T
AX与X
T
BX有相同的正、负惯性指数p=2,q=0.因而由命题2.6.4.1知A与B合同,于是仅(B)入选.
解三
其中
秩(G)=1,由命题2.5.1.5即知,G的特征值为-3,0,0.因而A的特征值为0,3,3.而B的特征值为1,1,0.显然A与B不相似,但A与B的正惯性指数均为2,0,故A与B合同.仅(B)入选.
注:命题2.5.1.5 设n阶矩阵A=[a
ij
],若秩(A)=1,则A有n-1个零特征值λ
1
=λ
2
=…=λ
n-1
=0,另一个特征值为λ
n
=a
11
+a
22
+…+a
nn
=tr(A)(称为A的迹).
命题2.5.3.3 设矩阵A=[a
ij
]
n×n
与B=[b
ij
]
n×n
相似,则(4)a
11
+a
22
+…+a
nn
=b
11
+b
22
+…+b
nn
,即tr(A)=tr(B).
命题2.6.4.1 两个实对称矩阵合同的充要条件是其秩相同,且有相同的正惯性指数,即正、负特征值个数分别相同,亦即二次型X
T
、AX和X
T
BX有相同的正、负惯性指数.
两个同阶实对称矩阵相似的充要条件是它们有相同的特征值及重数,两个同阶实对称矩阵合同的充要条件是它们有相同的秩及相同的正(或负)惯性指数,因此两个同阶实对称矩阵相似必合同,但这两个矩阵合同而不一定相似(即两个同阶实对称矩阵的正、负惯性指数相同,不一定正、负特征值相同),因此得到下述命题.
转载请注明原文地址:https://kaotiyun.com/show/40x4777K
0
考研数学三
相关试题推荐
曲线y=,直线x=2及x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为________。
设函数f(t)在[0,+∞)上连续,且满足方程求f(t).
设函数z=z(x,y)由方程sinx+2y—z=ez所确定,则=________.
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则f’(0)=_____________________。
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
设I=xydxdy,其中D由曲线y=,y=-x和y=所围成,则I的值为().
使不等式成立的x的范围是
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P(|~μ|≥2}≤_______.
设f(x)∈C[0,1],f(x)>0.证明积分不等式:lnf(x)dx≥lnf(x)dx.
随机试题
心肌收缩时胞质内增多的钙离子最重要来源于
设f(1/x)=x()2,则f(x)=_______.
在《宝玉挨打》中,贾政狠打宝玉的根本原因是
54岁女性,脑动脉硬化症病史3年,突感眩晕、呕吐、言语不清。查体:声音嘶哑、吞咽困难、言语含混,左眼裂小、瞳孔小、水平眼震、左面部右半身痛觉减退,左侧指鼻试验不准.诊断
关于注册证书和执业印章失效情形的说法,正确的有()。
某建筑工地施工需要使用各种机械设备,在施工阶段这些机械设备的噪声LAeqdB()不得超过的限值。
金融市场运行的关键是()。
建立评价学生全面发展的评价指标体系必须包括()。
WhendidMissGreenbecomeaswimmingstar?HowoldisMissGreennow?
Youcanperformallthosefunctionsthatyouperformatpresentwithyourmobiledevicesbutofmuchhigherspeedthan【M1】______
最新回复
(
0
)