首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:x,x0∈(a,b)且x≠x0时,f′(x)在(a,b)单调减少的充要条件是 f(x0)+f′(x0)(x-x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:x,x0∈(a,b)且x≠x0时,f′(x)在(a,b)单调减少的充要条件是 f(x0)+f′(x0)(x-x0)>f(x). (*)
admin
2016-10-26
28
问题
设f(x)在(a,b)内可导,证明:
x,x
0
∈(a,b)且x≠x
0
时,f′(x)在(a,b)单调减少的充要条件是
f(x
0
)+f′(x
0
)(x-x
0
)>f(x). (*)
选项
答案
充分性:设(*)成立,[*]x
1
,x
2
∈(a,b)且x
1
<x
2
[*] f(x
2
)<f(x
1
)+f′(x
1
)(x
2
-x
1
),f(x
1
)<f(x
2
)+f′(x
2
)(x
1
-x
2
). 两式相加 [*] [f′(x
1
)-f′(x
2
)](x
2
-x
1
)>0 [*] f′(x
1
)>f′(x
2
),即f′(x)在(a,b)单调减少. 必要性:设f′(x)在(a,b)单调减少.对于[*]x,x
0
∈(a,b)且x≠x
0
,由微分中值定理得 f(x)-[f(x
0
)+f′(x
0
)(x-x
0
)]=[f′(ξ)-f′(x
0
)](x-x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Gu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α1,则().
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
微分方程y"-2y’+2y=ex的通解为________.
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,fˊ(t)>0,(0<t<π/2),若曲线L的切线与x轴的交点到切点的距离值恒为1,求函数f(t)的表达式,并求此曲线L与x轴与y轴无边界的区域的面积.
设f有连续导数,其中∑是由y=x2+z2和y=8-x2-z2所围立体的外侧,则I=().
函数u=ln(x2+y2+z2)在点M(1,2,-2)处的梯度gradu|M=__________.
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.证明当t>0时,.
随机试题
腹内恶性肿瘤的早期临床表现中,下列哪项是错误的()
反映卫生资源分配是否合理的指标是
检查阴道毛滴虫以下哪种方法不正确
根据《支付结算办法》的规定,下列各项中,商业银行向其办理信用卡收单业务时,()行业应当收取不低于交易金额2%的手续费。
菲利普斯曲线揭示了失业率和通胀率之间存在()。
试论述为什么要强调着重从思想上建设党。
A.3′→5′B.5′→3′C.N端→C端D.C端→N端RNA的转录方向是
下列网络互连设备中,属于物理层的是(29)________________。
以下关于报表的叙述不正确的是()。
考生文件夹下有一个数据库文件“samp3.accdb”,其中存在已经设计好的窗体对象“fTest”及宏对象“ml”。请在此基础上按照以下要求补充窗体设计。将窗体标题设置为“测试窗体”。注意:不能修改窗体对象tTest中未涉及的属性;不能修改宏对象“m
最新回复
(
0
)