首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
admin
2013-03-19
84
问题
设y=e
x
(C
1
sinx+C
2
cosx)(C
1
,C
2
为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
选项
答案
y"-2y’+2y=0.
解析
一:由通解的形式可知特征方程的两个根是r
1
,r
2
=1±i,从而得知特征方程为
(r-r
1
)(r-r
2
)=r
2
-(r
1
+r
2
)r+r
1
r
2
=r
2
-2r+2=0.
由此,所求微分方程为y"-2y’+2y=0.
二:根本不去管它所求微分方程是什么类型(只要是二阶),由通解y=e
x
(C
1
sinx+C
2
cosx),求得
y’=e
x
[(C
1
-C
2
)sinx+(C
1
+C
2
)cosx], y"=e
x
(-2C
2
sinx+2C
1
cosx),这三个式子消去C
1
与C
2
,得y"-2y’+2y=0.
转载请注明原文地址:https://kaotiyun.com/show/RH54777K
0
考研数学一
相关试题推荐
已知y1=e3x-xe2x,y2=ex-xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0=0,y’|x=0=1的解为y=_______。
(00年)设函数y=y(x)由方程2xy=x+y所确定.则dy|x=0=_______
(07年)二元函数f(x,y)在点(0,0)处可微的一个充分条件是
(08年)如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于
设函数y=f(x)是微分方程y"一2y’+4y=0的一个解,且f(x0)>0,f’(x0)=0,则f(x)在x0处
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
设(Ⅰ)求满足Aξ2=ξ1,A2ξ2=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则
[2002年]设函数f(u)可导,y=f(x2).当自变量x在x=一1处取得增量Δx=一0.1时,相应的函数增量Δy的线性主部为0.1,则f'(1)=().
(00年)具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
随机试题
内脏损伤后,防治休克的措施是
患者,男,42岁。患慢性阑尾炎3年,经常反复发作,发时右下腹隐隐疼痛,痛处固定不移,腹皮微急,伴轻度恶心欲吐,便干溲黄,舌苔薄黄,脉弦。治疗应首选( )。
招标投标制度在大胆探索和创立时期具有的特点包括()。
折旧率随着使用年限的变化而变化的固定资产折旧计算方法是()。
飞机库的每个防火分区至少应有两个直通室外的安全出口,其最远工作地点到安全出口的距离不应大于()m。
关于奥肯定律的含义和作用的说法,正确的有()。
学校开展各类活动的最基本的基础组织是()。
在法国小学用汉语教数学体现了沉浸式外语教学的理念.()
简述新闻价值的五要素。(四川大学2014年研)相关试题:(1)怎样理解新闻价值要素中的“重要性”?请结合一些典型新闻报道举例说明。(中山大学2015年研)(2)简述新闻价值构成要素。(广西大学2018年研;中南财大2010年研;厦门大学2009年研)
Smallbusinessownersmustaccepttheburdensofentrepreneurship.Beinginbusinessforyour-selfrequiresyourfullattention
最新回复
(
0
)