首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,b12,…,b1,2n)T。试写出线性方程组 的通解,并说明理由。
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,b12,…,b1,2n)T。试写出线性方程组 的通解,并说明理由。
admin
2017-10-19
69
问题
已知线性方程组
的一个基础解系为:(b
11
,b
12
,…,b
1,2n
)T,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
12
,…,b
1,2n
)
T
。试写出线性方程组
的通解,并说明理由。
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的挖个向量就是B的n个行向量的转置向量,因此,由(Ⅰ)的已知基础解系可知AB
T
=0转置即得BA
T
=0因此可知A
T
的n个列向量——即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量。由于B的秩为n,故(Ⅱ)的解空间的维数为2n一n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系。已知(Ⅰ)的基础解系含n个向量,故2n一r(A)=n,得r(A)=n,于是A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
,(c
1
,c
2
,…,c
n
为任意常数)
解析
转载请注明原文地址:https://kaotiyun.com/show/4aH4777K
0
考研数学三
相关试题推荐
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.(I)求a1,2,a3,a4应满足的条件;(Ⅱ)求向量组α1,α2,α3,α4的一
设某企业生产一种产品,其成本C(Q)=一16Q2+100Q+1000,平均收益=a一(a>0,0<b<24),当边际收益MR=44,需求价格弹性时获得最大利润,求获得最大利润时产品的产量及常数a与b的值.
设函数,则f(10)(1)=___________.
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
随机变量X的密度函数为f(x)=ke—|x|(一∞<x<+∞),则E(X2)=__________.
随机变量X的密度函数为,则D(X)=________.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2—α3,α2+α3线性相关,则a=
设向量组(I):α1,α2,…,αs的秩为r,,向量组(Ⅱ):β1,β2,…,βs的秩为r。,且向量组(Ⅱ)可由向量组(I)线性表示,则().
判断级数的敛散性.
随机试题
王军利用Word2010编辑一份书稿,出版社要求目录和正文的页码分别采用不同的格式,均从第1页开始,最优的操作方法是________。
收入成果类账户与所有者权益类账户性质相似,结构基本相同,即借方登记减少额,贷方登记增加额。()
在合理的利率成本下,个人信贷能力的决定因素有()。I.客户收入能力Ⅱ.客户支出能力Ⅲ.客户资产价值Ⅳ.客户负债价值
按照房屋产权性质的不同,房产可以分为私有房产、联营企业房产、股份制企业房产、涉外房产、营业用房、行政用房。()
“爰书”这一法律文书出现于()。
某保险公司多年的统计资料表明,在索赔客户中被盗索赔占20%,以X表示在随机抽查的100个索赔客户中因被盗向保险公司索赔的户数.(1)写出X的概率分布;(2)利用德莫弗一拉普拉斯定理,求被盗索赔客户不少14户且不多于30户的概率的近似值.
设信道带宽为3000Hz,根据尼奎斯特(Nyquist)定理,理想信道的波特率为(16)波特,若采用QPSK调制,其数据速率应为(17),如果该信道信噪比为30dB,则该信道的带宽约为(18)。设信道误码率为10-5,帧长为10Kb,差错为单个错,则帧出错
SNMPv2定义的32位计数器是(61)。
设有以下定义和语句inta[3][2]={1,2,3,4,5,6},*p[3];p[0]=a[1];则*(p[0]+1)所代表的数组元素是
"Before,weweretooblacktobewhite.Now,we’retoowhitetobeblack."Hadija,oneofSouthAfrica’s3.5mColoured(mixedr
最新回复
(
0
)