首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,b12,…,b1,2n)T。试写出线性方程组 的通解,并说明理由。
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,b12,…,b1,2n)T。试写出线性方程组 的通解,并说明理由。
admin
2017-10-19
66
问题
已知线性方程组
的一个基础解系为:(b
11
,b
12
,…,b
1,2n
)T,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
12
,…,b
1,2n
)
T
。试写出线性方程组
的通解,并说明理由。
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的挖个向量就是B的n个行向量的转置向量,因此,由(Ⅰ)的已知基础解系可知AB
T
=0转置即得BA
T
=0因此可知A
T
的n个列向量——即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量。由于B的秩为n,故(Ⅱ)的解空间的维数为2n一n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系。已知(Ⅰ)的基础解系含n个向量,故2n一r(A)=n,得r(A)=n,于是A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
,(c
1
,c
2
,…,c
n
为任意常数)
解析
转载请注明原文地址:https://kaotiyun.com/show/4aH4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上可导,f’(x)+[f(x)]2一=0,且,则在(a,b)内必定
设z=f[cos(x2+y2)一1,In(1+x2+y2)],其中f有连续的一阶偏导数,则=
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设向量组(I):α1,α2,…,αs的秩为r,,向量组(Ⅱ):β1,β2,…,βs的秩为r。,且向量组(Ⅱ)可由向量组(I)线性表示,则().
设向量组α1,α2,α3,α4线性无关,则向量组().
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得。
求曲线y=x2一2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设D是由点O(0,0),A(1,2)及B(2,1)为顶点构成的三角形区域,计算.
改变积分次序.
随机试题
长期从事重金属作业的人应多吃()。
三个R=10Ω的电阻作三角形连接,已知线电流I1=22A,则该三相负载的有功功率P=()。
下列不属于对患有职业病的员工的处理方法的是( )。
方针目标的动态管理最重要的环节是_________。
EDI是通过电子方式,采用(),利用计算机网络进行结构化数据的传输和交换。
“以意逆志”“知人论世”的命题由()最先提出。
某数据库表中有一个地址字段,查找字段最后3个字为“9信箱”的记录,准则是()。
Fromthepassagewelearnthatmandiesinseadisastersmainlybecause______.Wecaninferfromthepassagethat______.
说明:请按照下面的中文提示,以中国学生王小明(男)的身份填写下列×××大学入学申请表格。具体信息如下:出生日期:1975年8月20日联系地址:广州市中山路710号联系电话:020-61006571个人情况说明:本人毕业院校和
Allthewisdomoftheages,allthestoriesthathavedelightedmankindforcenturies,areeasilyandcheaply【C1】______toallof
最新回复
(
0
)