首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(05分)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
(05分)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
admin
2018-08-01
76
问题
(05分)设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
,则α
1
,A(α
1
+α
2
)线性无关的充分必要条件是
选项
A、λ
1
≠0
B、λ
2
≠0
C、λ
1
=0
D、λ
2
=0
答案
B
解析
由λ
1
≠λ
2
及特征值的性质知α
1
,α
2
线性无关.显然,向量组{α
1
,A(α
1
+α
2
)}={α
1
,λ
1
α
1
+λ
2
α
2
}等价于向量组{α
1
,λ
2
α
2
}.当λ
2
≠0时,它线性无关,当λ
2
=0时,它线性相关,故α
1
,A(α
1
+α
2
)线性无关
λ
2
≠0.
转载请注明原文地址:https://kaotiyun.com/show/52j4777K
0
考研数学二
相关试题推荐
已知在x>0处有二阶连续导数,且满足.求f(u)的表达式.
,求极大线性无关组,并把其余向量用极大线性无关组线性表出.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
证明:若矩阵A可逆,则其逆矩阵必然唯一.
求微分方程y"+2y’-3y=(2x+1)ex的通解.
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=_______
设A=有三个线性无关的特征向量,则a=_______.
设A是m×n矩阵,且m>n,下列命题正确的是().
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
随机试题
《建设工程安全生产管理条例》第14条规定,工程监理单位和监理工程师应当按照法律、法规和工程建设强制性标准实施监理,并对建设工程安全生产承担()。
细胞兴奋的标志是
有关ATP合酶的叙述错误的是
单身期指从工作至结婚的这段时期,一般为2~8年,这个时期能够承受的风险较大,可以适当进行积极投资。
下列措施中,只能提高安全边际而不能降低保本点的是()。
科学发展观标志着我们党在三大方面的认识达到了新水平、新高度。这三大方面的认识不包括()。
一般来说,下列哪些是在正式组织中才能得到满足的?
短时记忆的容量为()个组块。
求.
Somepeopleprefertogetupearlyinthemorningandstarttheclay’swork.Othersprefertogetuplaterinthedayandworku
最新回复
(
0
)