首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Axβ必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1.
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Axβ必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1.
admin
2019-12-26
87
问题
已知n维向量组α
1
,α
2
,…,α
n
中,前n-1个线性相关,后n-1个线性无关,若令β=α
1
+α
2
+…+α
n
,A=(α
1
,α
2
,…,α
n
).试证方程组Axβ必有无穷多组解,且其任意解(α
1
,α
2
,…,α
n
)
T
中必有α
n
=1.
选项
答案
由题设卢=α
1
+α
2
+…+α
n
,可得 [*] 则向量η=(1,1,…,1)
T
是方程组Ax=β的解,由此知方程组Ax=β有解,故r(A)=r(A,β). 由题设知α
1
,α
2
,…,α
n-1
线性相关,推得α
1
,α
2
,…,α
n
线性相关,而又由题设知α
2
,α
3
,…,α
n
线性无关,所以向量组α
1
,α
2
,…,α
n
的秩为n-1,从而r(A)=n-1. 综上可知,r(A)=r(A,β)=n-1<n.故方程组Ax=β有无穷多组解,并且其对应齐次线性方程组Ax=0的基础解系由n-(n-1)=1个非零解组成. 又由α
1
,α
2
,…,α
n-1
线性相关可知,存在不全为零的数λ
1
,λ
2
,…,λ
n-1
,使 λ
1
α
1
+λ
2
α
2
+…+λ
n-1
α
n-1
=0. 由此推得 [*] 所以非零向量(λ
1
,λ
2
,…,λ
n-1
,0)
T
是Ax=0的解,因而是Ax=0的一个基础解系,故Ax=β的通解 x=k(λ
1
,λ
2
,…,λ
n-1
,0)
T
+(1,1,…,1,1)
T
,其中k为任意常数, 且显见a
n
=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/5JD4777K
0
考研数学三
相关试题推荐
求函数u=yyx的全微分.
设(2,1,5,2,1,3,1)是来自总体X的简单随机样本值,则总体X的经验分布函数Fn(x)=______.答案
假设随机变量X1,X2,…,X2n独立同分布,且E(Xi)=D(Xi)=1(1≤i≤2n),如果Yn=则当常数C=________时,根据独立同分布中心极限定理,当n充分大时,Yn近似服从标准正态分布。
设A=(a<0),且AX=0有非零解,则A*X=0的通解为__________.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
求下列函数的带皮亚诺余项的麦克劳林公式:(Ⅰ)f(x)=(Ⅱ)f(x)=xln(1-x2)
设f(χ)有连续一阶导数,试求=_______.
计算二重积分|x2+y2—1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤1}。
设求f(x),g(x).
(1996年)设某种商品的单价为P时,售出的商品数量Q可以表示成.其中a、b、c均为正数,且a>bc.1)求P在何范围变化时,使相应销售额增加或减少;2)要使销售额最大,商品单价P应取何值?最大销售额是多少?
随机试题
学位
我国铁路联运货物运输费用是按()计算
()依法对期货公司及其从业人员从事期货投资咨询业务实行监督管理。
根据刑事法律制度的规定,下列各项中,有期徒刑的期限是()。
我国公布的首家全国农业旅游示范点有()。
教育方针通常由政府或政党提出,对教育实践具有强制性。()
广州战略性新兴产业的产品有的是按国家标准生产,尚未与国际标准___________,与国际同类相关产品技术不___________,导致这些产品只能销往国内市场。填入画横线部分最恰当的一项是()。
学校食堂里,肉类有鸡肉、猪肉、牛肉、羊肉、鱼肉;蛋类有鸡蛋、咸鸭蛋、鹅蛋、松花蛋;蔬菜有白菜、菠菜、花菜。小华每天中午都去食堂吃饭,都点三个不同的菜,其中至少包括肉类、蛋类、蔬菜中的两种,问至少经过多少天,可以确定小华有两天点的菜完全相同?
设函数f(x)任点x=a处可导,则函数丨f(x)丨在点x=a处不可导的允分条件是
A、态度非常生气B、态度非常强硬C、态度非常坚决D、说话声音太大C
最新回复
(
0
)