首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Axβ必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1.
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Axβ必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1.
admin
2019-12-26
59
问题
已知n维向量组α
1
,α
2
,…,α
n
中,前n-1个线性相关,后n-1个线性无关,若令β=α
1
+α
2
+…+α
n
,A=(α
1
,α
2
,…,α
n
).试证方程组Axβ必有无穷多组解,且其任意解(α
1
,α
2
,…,α
n
)
T
中必有α
n
=1.
选项
答案
由题设卢=α
1
+α
2
+…+α
n
,可得 [*] 则向量η=(1,1,…,1)
T
是方程组Ax=β的解,由此知方程组Ax=β有解,故r(A)=r(A,β). 由题设知α
1
,α
2
,…,α
n-1
线性相关,推得α
1
,α
2
,…,α
n
线性相关,而又由题设知α
2
,α
3
,…,α
n
线性无关,所以向量组α
1
,α
2
,…,α
n
的秩为n-1,从而r(A)=n-1. 综上可知,r(A)=r(A,β)=n-1<n.故方程组Ax=β有无穷多组解,并且其对应齐次线性方程组Ax=0的基础解系由n-(n-1)=1个非零解组成. 又由α
1
,α
2
,…,α
n-1
线性相关可知,存在不全为零的数λ
1
,λ
2
,…,λ
n-1
,使 λ
1
α
1
+λ
2
α
2
+…+λ
n-1
α
n-1
=0. 由此推得 [*] 所以非零向量(λ
1
,λ
2
,…,λ
n-1
,0)
T
是Ax=0的解,因而是Ax=0的一个基础解系,故Ax=β的通解 x=k(λ
1
,λ
2
,…,λ
n-1
,0)
T
+(1,1,…,1,1)
T
,其中k为任意常数, 且显见a
n
=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/5JD4777K
0
考研数学三
相关试题推荐
设f(ln)x=,则∫f(x)dx=______.
已知=_____.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为________.
已知随机变量X服从参数为1的指数分布,Y服从标准正态分布,X与Y独立,现对X进行n次独立重复观察,用Z表示观察值大于2的次数,求T=Y+Z的分布函数FT(t).
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn.+α1线性无关.
A是3阶矩阵,且A-E,A-2E,2A+E均不可逆,则|A|=____.
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
设随机变量X服从参数为1的指数分布,随机变量函数Y=1—e-x的分布函数为FY(y),则=______.
设则A,B的关系为().
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分等于
随机试题
酸碱指示剂一般是有机弱酸或有机弱碱,它们在不同pH值的溶液中呈现不同颜-色是因为()。
分层注水井全井注水量不应超过配注水量的±20%。()
在西方美学史上,提出“美是道德的象征”这一命题的美学家是()
成人常规心脏摄影,焦一片距离应为
“十二五”时期,要把符合落户条件的农业转移人口逐步转为城镇居民作为推进城镇化的()任务。
阶级矛盾和统治阶级内部矛盾的不可调和性,是警察产生的政治条件。( )
1.2013年6月22日,在柬埔寨首都金边召开的第37届世界遗产委员会会议一致审议通过中国的红河哈尼梯田文化景观列入《世界遗产名录》。红河哈尼梯田文化景观成为中国第31项世界文化遗产,中国世界遗产总数达到45项。汉文字史料记载就有1300多年以上
简述抵押权的实现。
信息系统项目完成后,最终产品或项目成果应置于(332)内,当需要在此基础上进行后续开发时,应将其转移到(333)后进行。(333)
HowtoReadEffectivelyManystudentstendtoreadbookswithoutanypurpose.Theyoftenreadabookslowlyandingreatdeta
最新回复
(
0
)