首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三节矩阵,P是三阶可逆矩阵,已知 P-1AP=,且Aα1=α1,Aα2=α2,Aα3=0, 则p是( ).
设A是三节矩阵,P是三阶可逆矩阵,已知 P-1AP=,且Aα1=α1,Aα2=α2,Aα3=0, 则p是( ).
admin
2016-01-25
45
问题
设A是三节矩阵,P是三阶可逆矩阵,已知
P
-1
AP=
,且Aα
1
=α
1
,Aα
2
=α
2
,Aα
3
=0,
则p是( ).
选项
A、[α
1
,α
1
,α
1
+α
3
]
B、[α
2
,α
3
,α
1
]
C、[2α
1
+3α
2
,一8α
2
,4α
3
]
D、[α
1
+α
2
,α
2
+α
3
,α
3
+α
1
]
答案
C
解析
P的三个列向量是A的对直于特征值的特征向量,判别时要利用下述三条原则:
(1)A的对于同一特征值的特征向量α
1
,α
2
的线性组合如kα
1
,kα
1
+kα
2
仍是A的属于同一特征值的特征向量;
(2)对于不同特征值的特征向量的线性组合(例如其和或其差)不再是A的特征向量;
(3)P中特征向量的排列次序与对角阵中特征值的排列次序一致.
利用上述原则即可判定正确的选项.
解一 (A)中α
1
+α
3
不是A的特征向量,(D)中α
2
+α
3
,α
3
+α
1
,也不再是A的特征向量,(B)中特征向量与对角阵中特征值的排列不一致,故均不能充当P.仅(C)入选.
解二 因为α
1
、α
2
是λ=1的特征向量,α
3
是λ=0的特征向量,2α
1
+3α
2
,一8α
2
仍是λ=1的特征向量,4α
3
仍是λ=0的特征向量,且其排列次序与对角阵中特征值的排列次序一致.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/5OU4777K
0
考研数学三
相关试题推荐
2020年2月5日召开的中央全面依法治国委员会第三次会议强调,坚持全面依法治国,是中国特色社会主义国家制度和国家治理体系的显著优势。中国特色社会主义实践向前推进一步,法治建设就要跟进一步。新时代我国法治建设的指导方针是
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设A与B均为n,阶矩阵,且A与B合同,则().
计算空间曲积分为螺线x=cosθ,y=sinθ,z=θ,由A(1,0,0)到B(1,0,2π)的一段.
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
若三阶常系数齐次线性微分方程有特解y1=e-x,y2=2xe-x及y3=3ex,则该微分方程是().
设A与B均为n,阶矩阵,且A与B合同,则().
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)-1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3.
随机试题
国际信贷业务中,长期贷款利率主要有()
在组织目标制定的过程中,战术性行政组织目标的制定应坚持的原则是
电子商务在四个方面改变了国际企业国际营销的方式,下列说法错误的是()
肾盂造影所见:肾盏变形,受压拉长,多为哪种疾病之影像肾盂造影所见,肾盂内充盈缺损影,多为哪种疾病之影像
医患关系是建立在医疗保健活动中产生的最重要、最基本的医疗
1997年《有效银行监管的核心原则》确定了一个有效监管体系所必须具备的25项基本原则,分7类,以下属于这7类的是( )。
地理老师讲到地形时,使用彩色图片的效果比只用黑白图片的效果好,这主要体现了知觉的()
下列说法错误的是()。
恩格斯在谈到事物普遍联系的“辩证图景”时指出:“当我们深思熟虑地考察自然界或人类历史或我们自己的精神生活的时候,首先呈现在我们眼前的,是一幅由种种联系和相互作用无穷无尽地交织起来的画面。”联系具有普遍性,表现在()
「すみません、この本がだれのですか。」「________。」
最新回复
(
0
)