首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三节矩阵,P是三阶可逆矩阵,已知 P-1AP=,且Aα1=α1,Aα2=α2,Aα3=0, 则p是( ).
设A是三节矩阵,P是三阶可逆矩阵,已知 P-1AP=,且Aα1=α1,Aα2=α2,Aα3=0, 则p是( ).
admin
2016-01-25
27
问题
设A是三节矩阵,P是三阶可逆矩阵,已知
P
-1
AP=
,且Aα
1
=α
1
,Aα
2
=α
2
,Aα
3
=0,
则p是( ).
选项
A、[α
1
,α
1
,α
1
+α
3
]
B、[α
2
,α
3
,α
1
]
C、[2α
1
+3α
2
,一8α
2
,4α
3
]
D、[α
1
+α
2
,α
2
+α
3
,α
3
+α
1
]
答案
C
解析
P的三个列向量是A的对直于特征值的特征向量,判别时要利用下述三条原则:
(1)A的对于同一特征值的特征向量α
1
,α
2
的线性组合如kα
1
,kα
1
+kα
2
仍是A的属于同一特征值的特征向量;
(2)对于不同特征值的特征向量的线性组合(例如其和或其差)不再是A的特征向量;
(3)P中特征向量的排列次序与对角阵中特征值的排列次序一致.
利用上述原则即可判定正确的选项.
解一 (A)中α
1
+α
3
不是A的特征向量,(D)中α
2
+α
3
,α
3
+α
1
,也不再是A的特征向量,(B)中特征向量与对角阵中特征值的排列不一致,故均不能充当P.仅(C)入选.
解二 因为α
1
、α
2
是λ=1的特征向量,α
3
是λ=0的特征向量,2α
1
+3α
2
,一8α
2
仍是λ=1的特征向量,4α
3
仍是λ=0的特征向量,且其排列次序与对角阵中特征值的排列次序一致.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/5OU4777K
0
考研数学三
相关试题推荐
习近平强调,要正确认识当前经济形势,深入调查研究,以更大的力度推进全面深化改革,积极破解发展面临的各种难题、化解来自各方面的风险挑战和巨大压力,为推进改革发展、战胜各种风险挑战凝聚广泛共识、汇聚强大力量。推进全面深化改革要
2020年2月5日召开的中央全面依法治国委员会第三次会议强调,坚持全面依法治国,是中国特色社会主义国家制度和国家治理体系的显著优势。中国特色社会主义实践向前推进一步,法治建设就要跟进一步。新时代我国法治建设的指导方针是
设A,B是同阶正定矩阵,则下列命题错误的是().
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
证明下列曲线积分在整个xOy平面内与路径无关,并计算积分值:
求下列欧拉方程的通解:(1)x2y〞+3xyˊ+y=0;(2)x2y〞-4xyˊ+6y=x;(3)y〞-yˊ/x+y/xx=2/x;(4)x3y〞ˊ+3x2y〞-2xyˊ+2y=0;(5)x2y〞+xyˊ-4y=x3;(6)x
设A与B均为n,阶矩阵,且A与B合同,则().
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)-1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3.
随机试题
语流音变
在国标中,维生素A的测定采用高效液相色谱C18反相柱分离,紫外检测器检测,采用的定量方法为
传染性非典型肺炎的病原学特点是()
种植单位必须有专人负责,严加保管、严禁自行销售和使用的是属于国家二级保护野生药材物种的是
病人,男性,145岁,因直肠癌入院。遵医嘱做肠道手术准备,护士正确的做法是
在财务型风险管理技术中,( )是一种成本低、方便有效的方法。
下列不属于写字楼物业管理风险特点的是()。
仿照所给的句子,续写两句话,使语意前后连贯,构成一组排比句。例句:与其咒骂黑暗,不如点亮一支蜡烛;
19世纪晚期和20世纪早期,物理学发生的革命性变化不包括()。
在我国,有权提出法律议案的有( )。
最新回复
(
0
)