首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm和β1,β2,…,βm都是n维向量组,k1,k2,…,km和P1,P2,…,pm都是不全为0的数组,使得(k1+p1)α1+(k2+p2)α2+…+(km+pm)αm+(k1-p1)β1+(k2-p2)β2+…+(km-pm)βm=0
设α1,α2,…,αm和β1,β2,…,βm都是n维向量组,k1,k2,…,km和P1,P2,…,pm都是不全为0的数组,使得(k1+p1)α1+(k2+p2)α2+…+(km+pm)αm+(k1-p1)β1+(k2-p2)β2+…+(km-pm)βm=0
admin
2016-10-21
63
问题
设α
1
,α
2
,…,α
m
和β
1
,β
2
,…,β
m
都是n维向量组,k
1
,k
2
,…,k
m
和P
1
,P
2
,…,p
m
都是不全为0的数组,使得(k
1
+p
1
)α
1
+(k
2
+p
2
)α
2
+…+(k
m
+p
m
)α
m
+(k
1
-p
1
)β
1
+(k
2
-p
2
)β
2
+…+(k
m
-p
m
)β
m
=0,则( )成立.
选项
A、α
1
,α
2
,…,α
m
和β
1
,β
2
,…,β
m
都线性相关.
B、α
1
,α
2
,…,α
m
和β
1
,β
2
,…,β
m
都线性无关.
C、α
1
+β
1
,α
2
+β
2
,…,α
m
+β
m
,α
1
-β
1
,α
2
-β
2
,…,α
m
-β
m
线性无关.
D、α
1
+β
1
,α
2
+β
2
,…,α
m
+β
m
,α
1
-β
1
,α
2
-β
2
,…,α
m
-β
m
线性相关.
答案
D
解析
先排除选项A和选项B.
如果取α
1
,α
2
,…,α
m
都是零向量,β
1
,β
2
,…,β
m
线性无关,此时只要k
i
=P
i
,i=1,2,…,m,则条件也满足,排除了选项A和选项B.
现在要看α
1
+β
1
,α
2
+β
2
,…,α
m
+β
m
,α
1
-β
1
,α
2
-β
2
,…,α
m
-β
m
线性相关还是线性无关.
等式(k
1
+p
1
)α
1
+(k
2
+P
2
)α
2
+…+(k
m
+p
m
)α
m
=(k
1
-P
1
)β
1
+(k
2
-P
2
)β
2
+…+(k
m
-P
m
)β
m
=0,可改写为
k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
m
(α
m
+β
m
)+p
1
(α
1
+β
1
)+P
2
(α
2
-β
2
)+…+P
m
(α
m
-β
m
)=0,
由k
1
,k
2
,…,k
m
和p
1
,p
2
,…,P
m
都不全为0,得到α
1
+β
1
,α
2
+β
2
,…,α
m
+β
m
,α
1
-β
1
,α
2
-β
2
,…,α
m
-β
m
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/5Tt4777K
0
考研数学二
相关试题推荐
已知函数f(x)在其定义域上存在二阶导数,于是().
设函数,问函数f(x)在x=1处是否连续?若不连续,修改函数在x=1处的定义,使之连续。
设0<x1<3,xn+1=(n=1,2,…)证明数列{xn}的极限存在,并求此极限。
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在c∈(0,1),使得f(c)=1-2c;存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
确定常数a,b,c的值,使得当x→0时,ex(1+bx+cx2)=1+ax+σ(x3).
已知两曲线y=f(x)与y=∫0arctanx在点(0,0)处的切线相同,写出此切线方程,并求极限.
设其中f(x)有连续的导数,且f(0)=0.求F’(x),并研究F’(x)在x=0处的连续性。
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解.由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知2
随机试题
下列有关趋势线和轨道线的描述,正确的有()。Ⅰ.两者都可独立存在并起作用Ⅱ.股价对两者的突破都可认为是趋势反转的信号Ⅲ.两者是相互合作的一对,但趋势线比轨道线重要Ⅳ.先有趋势线,后有轨道线
关于X射线造影方式的说法不正确的是
引起急性胰腺炎最常见的原因是
易发生变异而造成疾病流行的病原微生物是()
治疗腹痛饮食积滞重证,应首选()
患者,男,68岁。近日咳嗽、咳痰、气急明显,又出现神志不清、发绀而入院。既往有肺气肿病史。动脉血气分析pH7.31,PaO252mmHg,PaCO261mmHg,给予低浓度氧疗的依据是
在社会工作实务中,介入行动可以是()。
同说汉语,同写汉字,读一本历史;抚一张古琴。文化像氧气,融化在血液中……13亿2300万人口共同植根于此,使我们精神上融为一体而不可分割。这表明()。①中华文化是联结两岸人民的精神纽带②两岸人民有着共同的文化认同感和归属感③爱国与爱社会主义本质上
有一水池,如往水池里灌水直至灌满需要15个小时,若抽掉全部的水则需要20个小时,现在先灌3个小时的水之后再抽掉水池里的水,则要用()小时将水池里的水抽完。
ManywordsintheEnglishlanguageareFrenchin______.
最新回复
(
0
)