首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由 A1的行向量线性表出. 若线性方程组(Ⅰ)A1x=b1和(Ⅱ)A2x=b2都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A2,b2)的行向量组可以由(A1,b1)的行向量组线
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由 A1的行向量线性表出. 若线性方程组(Ⅰ)A1x=b1和(Ⅱ)A2x=b2都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A2,b2)的行向量组可以由(A1,b1)的行向量组线
admin
2016-10-20
67
问题
已知n元齐次线性方程组A
1
x=0的解全是A
2
x=0的解,证明A
2
的行向量可以由
A
1
的行向量线性表出.
若线性方程组(Ⅰ)A
1
x=b
1
和(Ⅱ)A
2
x=b
2
都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A
2
,b
2
)的行向量组可以由(A
1
,b
1
)的行向量组线性表出.
选项
答案
因为A
1
x=0的解全是A
2
x=0的解,所以 A
1
x=0与[*]同解. 那么n-r(A
1
)=n-r[*] 所以A
2
的行向量可以由A
1
的行向量线性表出. 因为A
1
x=b
1
的解全是A
2
x=b
2
的解,所以 A
1
x=b
1
与[*]同解. 如果A
1
α=b
1
,A
1
η=0,则因A
1
x=b
1
的解全是A
2
x=b
2
的解,那么α和α+η都是A
2
x=b
2
的解,而有A
2
α=b
2
及A
2
(α+η)=b
2
,从而A
2
η=0.说明此时A
1
x=0的解全是A
2
x=0的解,那么 [*] 所以(A
2
,b
2
)的行向量组可以由(A
1
,b
1
)的行向量组线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/5gT4777K
0
考研数学三
相关试题推荐
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
证明[*]
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
判断下列级数的敛散性
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
有一立体,底面是长轴为2a,短轴为2b的椭圆,而垂直于长轴的截面都是等边三角形,求其体积.
设A与B均为n,阶矩阵,且A与B合同,则().
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
随机试题
A.骨肉瘤B.脂肪瘤C.血管瘤D.皮肤乳头状瘤最易癌变的肿瘤是()
卵巢癌诊断的首选肿瘤标志物是()。
下列()项应进行沉降观测。
根据我国《合同法》,下列关于要约和承诺的说法中,正确的是()。
合同管理人员在对合同的主要内容进行分析、解释和说明的基础上,通过组织项目管理人员和各个工程小组学习合同条文和合同总体分析结果,这一工作是()。
某个企业为了保证本企业产品的质量和性能,规定只能购买特定生产厂的一种关键材料。这种影响生产者购买决策的因素属于()因素。
截至2008年12月31日,中国网民规模达到2.98亿人,普及率达到22.6%,宽带网民规模达到2.7亿人。手机上网网民规模达到11760万人,较2007年增长了133%。农村网民规模增长迅速,达到8460万人,较2007年增长60.8%,增速远远超过
跟电视一样,收视率对中国的电视和广告行业而言,是个地地道道的舶来品,在中国的应用不过短短二十余年。由于这是一个全新的行业指标,因此不仅国内开展此类业务的经验还有待摸索和积累,而且对这一领域进行深入研究的专家和机构也少之又少。如此一来,在当前收视率已经被看作
Whatdoesthewomanmean?
ConversationalSkillsPeoplewhousuallymakeusfeelcomfortableinconversationsaregoodtalkers.Andtheyhavesomething
最新回复
(
0
)