首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由 A1的行向量线性表出. 若线性方程组(Ⅰ)A1x=b1和(Ⅱ)A2x=b2都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A2,b2)的行向量组可以由(A1,b1)的行向量组线
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由 A1的行向量线性表出. 若线性方程组(Ⅰ)A1x=b1和(Ⅱ)A2x=b2都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A2,b2)的行向量组可以由(A1,b1)的行向量组线
admin
2016-10-20
53
问题
已知n元齐次线性方程组A
1
x=0的解全是A
2
x=0的解,证明A
2
的行向量可以由
A
1
的行向量线性表出.
若线性方程组(Ⅰ)A
1
x=b
1
和(Ⅱ)A
2
x=b
2
都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A
2
,b
2
)的行向量组可以由(A
1
,b
1
)的行向量组线性表出.
选项
答案
因为A
1
x=0的解全是A
2
x=0的解,所以 A
1
x=0与[*]同解. 那么n-r(A
1
)=n-r[*] 所以A
2
的行向量可以由A
1
的行向量线性表出. 因为A
1
x=b
1
的解全是A
2
x=b
2
的解,所以 A
1
x=b
1
与[*]同解. 如果A
1
α=b
1
,A
1
η=0,则因A
1
x=b
1
的解全是A
2
x=b
2
的解,那么α和α+η都是A
2
x=b
2
的解,而有A
2
α=b
2
及A
2
(α+η)=b
2
,从而A
2
η=0.说明此时A
1
x=0的解全是A
2
x=0的解,那么 [*] 所以(A
2
,b
2
)的行向量组可以由(A
1
,b
1
)的行向量组线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/5gT4777K
0
考研数学三
相关试题推荐
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
求下列隐函数的指定偏导数:
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
判别下列级数是否收敛,如果收敛,是条件收敛还是绝对收敛?
设u=f(x,z),而z=z(x,y)是由方程z=x+yψ(z)所确定的隐函数,其中f有连续偏导数,而ψ有连续导数,求du.
设f(x)为正值连接函数,f(0)=1,且对任一x>0,曲线y=f(x)在区间[0,x]上的一段弧长等于此弧段下曲边梯形的面积,求此曲线方程.
设n阶矩阵A的元素全为1,则A的n个特征值是________.
随机试题
下列物质中属于酸碱指示剂的是()。
药学服务具有很强的社会属性,其中的涵义是指药学服务应()。
药品检验机构出具的检验结果不实,造成损失的,应当()。
国务院铁路、交通、水利等有关部门按照国务院规定的职责分工,负责对全国的有关()建设工程勘察、设计活动的监督管理。
进行建设项目安全预评价依据的文件是项目()。
按起码运费计收指每一提单应计收的最低运费可以低于起码运费。()
老子说:“有无相生,难易相成,长短相形,高下相倾,音声相和,前后相随。”这里蕴含的哲理是()。
信息系统逻辑模型不包括()。
关系数据库管理系统能实现的专门关系运算包括选择、连接和【】。
Howdoesithappenthatchildrenlearntheirmothertonguesowell?Whenwecomparewithadultslearningaforeign11.______
最新回复
(
0
)