设4阶矩阵A=(α1,α2,α3,α4),已知齐次方程组AX=0的通解为c(1,一2,1,0)T,c任意.则下列选项中不对的是

admin2019-01-25  21

问题 设4阶矩阵A=(α1,α2,α3,α4),已知齐次方程组AX=0的通解为c(1,一2,1,0)T,c任意.则下列选项中不对的是

选项 A、α1,α2,α3线性相关.
B、α1,α2线性无关.
C、α1,α2,α4线性无关.
D、α1,α2,α4线性相关.

答案D

解析 条件说明α1—2α23=0,并且r(α1,α2,α3,α4)=3.
显然α1,α2,α3线性相关,并且r(α1,α2,α3)=2.α3可用α1,α2线性表示,因此r(α1,α2)=r(α1,α2,α3)=2.α1,α2线性无关.(A)和(B)都对.
r(α1,α2,α3)=r(α1,α2,α3,α4)=3,(C)对(D)错.
转载请注明原文地址:https://kaotiyun.com/show/5qM4777K
0

最新回复(0)