首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)>0,f"(x)在(一∞,+∞)内连续,令φ(x)= (1)求φ’(x),并讨论φ’(x)的连续性. (2)证明φ(x)单调递增.
设f(x)>0,f"(x)在(一∞,+∞)内连续,令φ(x)= (1)求φ’(x),并讨论φ’(x)的连续性. (2)证明φ(x)单调递增.
admin
2017-07-26
50
问题
设f(x)>0,f"(x)在(一∞,+∞)内连续,令φ(x)=
(1)求φ’(x),并讨论φ’(x)的连续性.
(2)证明φ(x)单调递增.
选项
答案
(1)当x≠0时, [*] 于是,当x≠0时,f(x)>0,[∫
0
x
f(t)dt]
2
>0,φ’(x)连续. 又 [*] 所以φ’(x)在x=0处连续. (2)要证φ(x)单调递增,只要证明φ’(x)≥0.因为φ’(x)=[*],又f(x)>0,[∫
0
x
f(t)dt]
2
≥0,只需证明g(x)=∫
0
x
(x—t)f(t)dt≥0. 当x=0时,g(0)=0;当x>0时,g’(x)=∫
0
x
f(t)dt>0;当x<0时,g’(x)=一∫
0
x
f(t)dt<0.因此,当x<0时,g(x)严格递减,当x>0时,g(x)严格递增,而g(0)=0为最小值,故g(x)≥0,并且仅当x=0时,g(0)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/5yH4777K
0
考研数学三
相关试题推荐
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
[*][*]
当级数都收敛时,级数().
由题设,引入辅助函数,即g(x)=ex,则f(x)与g(x)在区间[a,b]上满足柯西中值定理的条件,所以知存在一点η∈(a,b),使得[*]
设x轴正向到方向l的转角为ψ,求函数f(x,y)=x2-xy+y2在点(1,1)沿方向z的方向导数,并分别确定转角ψ,使得方向导数有(1)最大值,(2)最小值,(3)等于0.
求二元函数在区域D={(x,y)|x≥0,y≥0}上的最大值与最小值.
求极限
对于实数x>0,定义对数函数,依此定义试证:(1)=-lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
随机试题
患儿女,6个月。因“左下肢常屈曲,换尿布时可闻及左髋关节弹响”来诊。查体:左下肢屈曲,牵拉时可以伸直,松手后又呈屈曲状,局部皮肤未见异常,腹股沟皱纹不对称,左髋活动时闻及弹响。有助于疾病的早期发现与诊断的检查是
所有权总成本主要包括()。
将一切造价纠纷通过业主、监理工程师和承包商的共同努力得到解决,既由合同双方根据工程项目的合同文件规定及有关的法律条例,通过有好商量和妥协达成一致的解决工程造价争议纠纷的途径是()。
根据《关于建立水利建设工程安全生产条件市场准入制度的通知》的有关规定,制度的主要内容有()。
根据《会计档案管理办法》规定,()保管期限为5年。(8)
根据《个人所得税法》规定,下列各项所得中,免征个人所得税的是()。
根据刑事法律制度的规定,下列关于刑期起算日的表述,不正确的是()。
一般认为,边际商圈所覆盖的消费者人数约占商场能够覆盖的消费者总人数的()。
根据票据法律制度的规定,下列各项中,取得票据的人不得享有票据权利的有()。
在行政合同中,行政机关享有的权利有()。
最新回复
(
0
)