首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)>0,f"(x)在(一∞,+∞)内连续,令φ(x)= (1)求φ’(x),并讨论φ’(x)的连续性. (2)证明φ(x)单调递增.
设f(x)>0,f"(x)在(一∞,+∞)内连续,令φ(x)= (1)求φ’(x),并讨论φ’(x)的连续性. (2)证明φ(x)单调递增.
admin
2017-07-26
59
问题
设f(x)>0,f"(x)在(一∞,+∞)内连续,令φ(x)=
(1)求φ’(x),并讨论φ’(x)的连续性.
(2)证明φ(x)单调递增.
选项
答案
(1)当x≠0时, [*] 于是,当x≠0时,f(x)>0,[∫
0
x
f(t)dt]
2
>0,φ’(x)连续. 又 [*] 所以φ’(x)在x=0处连续. (2)要证φ(x)单调递增,只要证明φ’(x)≥0.因为φ’(x)=[*],又f(x)>0,[∫
0
x
f(t)dt]
2
≥0,只需证明g(x)=∫
0
x
(x—t)f(t)dt≥0. 当x=0时,g(0)=0;当x>0时,g’(x)=∫
0
x
f(t)dt>0;当x<0时,g’(x)=一∫
0
x
f(t)dt<0.因此,当x<0时,g(x)严格递减,当x>0时,g(x)严格递增,而g(0)=0为最小值,故g(x)≥0,并且仅当x=0时,g(0)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/5yH4777K
0
考研数学三
相关试题推荐
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T,若α1,α2,α3线性相关,求α的值;
设求f(x)在[0,+∞)的最大值与最小值.
与曲线(y一2)2=x相切,且与曲线在点(1,3)处的切线垂直,则此直线方程为_________.
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
设函数f(x)在区间[-1,1]上连续,则x=0是函数的().
设某产品的成本函数为c=aq2+bq+c,需求函数为a=1/e(d-p),其中C为成本,q为需求量(即产量),p为单价,a,b,c,d,e都是正的常数,且d>b,求:(Ⅰ)利润最大时的产量及最大利润;(Ⅱ)需求对价格的弹性;(Ⅲ)需求对价格弹性的绝对
设随机变量X取非负整数值的概率为P{X=n}=an,则EX=___________.
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
设函数f(x)有反函数g(x),且f9a)=3,f’(a)=1,f’’(a)=2,求g’’(3).
随机试题
腹膜透析的常见并发症是
贺拉斯最重要的美学著作是______。
本-周蛋白尿见于
目眩耳鸣,腰膝酸软,遗精乏力,舌红苔薄,脉弦细数。治法宜用:
干烤法杀灭芽孢的条件是
患者,女,29岁。外感风邪而偏正头痛,恶寒发热,目眩鼻塞,舌苔薄白,脉浮,适合选择
创立大会的职权不包括()
“进口口岸”栏:()。“提运单号”栏:()。
期货公司应当及时将投资者适当性制度实施方案及相关制度报公司所在地中国证监会派出机构备案。()
(复旦大学2011)以下不属于金融抑制内容范围的是()。
最新回复
(
0
)