首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T. (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)a为何值时,方程组有唯一解?求x1; (Ⅲ)a为何值时,方程组有无穷多解?求通解.
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T. (Ⅰ)证明行列式|A|=(n+1)an; (Ⅱ)a为何值时,方程组有唯一解?求x1; (Ⅲ)a为何值时,方程组有无穷多解?求通解.
admin
2013-10-11
68
问题
设n元线性方程组Ax=b,其中A=
,x=(x
1
,…,x
n
)
T
,b=(1,0,…,0)
T
.
(Ⅰ)证明行列式|A|=(n+1)a
n
;
(Ⅱ)a为何值时,方程组有唯一解?求x
1
;
(Ⅲ)a为何值时,方程组有无穷多解?求通解.
选项
答案
(Ⅰ)利用行列式性质,有 [*] (Ⅱ)若使方程组Ax=b有唯一解,则|A|=(n+1)a
n
≠0,即a≠0.则由克莱姆法则得 [*] (Ⅲ)若使方程组Ax=b有无穷多解,则|A|=(n+1)a
n
=0,即a=0. 把a=0代入到矩阵A中,显然有[*]=r(A)=n-1,方程组的基础解系含一个解向量,它的基础解系为k(1,0,0,…,0)
T
(k为任意常数). 代入a=0后方程组化为[*]特解取为(0,1,0,…,0)
T
,则方程组Ax=b的通解为k(1,0,0,…,0)
T
+(0,1,0,…,0)
T
,其中的k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/6KF4777K
0
考研数学三
相关试题推荐
2020年3月17日,国务院总理李克强主持召开国务院常务会议,会议指出,按照党中央、国务院决策部署,统筹推进疫情防控和经济社会发展,做好“六稳”工作,其中必须放在首位的是()
1937年7月7日,卢沟桥事变爆发,中国开始进入全民族抗战。全民族抗战以来中国军队取得的第一次重大胜利,粉碎了日军不可战胜的神话的战役是()
金融资本是由工业垄断资本和银行垄断资本融合在一起而形成的一种垄断资本。金融资本形成的主要途径包括()。
材料1历史已经并将继续证明,只有社会主义才能救中国,只有坚持和发展中国特色社会主义才能实现中华民族伟大复兴。国内外形势正在发生深刻复杂变化,我国发展仍处于重要战略机遇期。我们具备过去难以想象的良好发展条件,但也面临着许多前所未有的困难和挑战。中国
列宁得出社会主义可能在一国或数国首先取得胜利的结论依据是()。
一位社会学家发现大楼的一块玻璃坏了,起初他没太当回事,没过多久,他发现许多处窗户都破损了,经过调研后,他得出结论:一样东西如果有点破损,人们就会有意无意地加快它的破损速度,一样东西如果完好无损,或是及时维护,人们就会精心地护理。这就是著名的“破窗定律”。下
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则∫01f(x)dx=_________.
一阶常系数差分方程yt+1一4t=16(t+1)4t满足初值y0=3的特解是yt=___________.
随机试题
我国金融监管与货币政策的协调内容主要有()。(2009年真题)
下列物质久置空气中会变质的是()
丹参所没有的药理作用是
秦代君主或皇帝针对一时之事而以命令形式发布的法律文件是:()。
在图示xy坐标系下,单元体的最大主应力σ1大致指向()。
国有资产的特征包括()。
工商行政管理机关是发票的主管机关,负责发票印制、领购、开具、取得、保管、缴销的管理和监督。()
某企业采用先进先出法计算发出甲材料的成本,2007年2月1日,结存甲材料200公斤,每公斤实际成本100元;2月10日购入甲材料300公斤,每公斤实际成本110元;2月15日发出甲材料400公斤。2月末,库存甲材料的实际成本为()元。
内蒙古森林旅游产品有哪些特点?
GregFocker,playedbyBenStiller,representsagenerationofAmericankids(1)_____inthe1980sonthephilosophythatanyac
最新回复
(
0
)