首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
admin
2017-10-21
17
问题
设α
1
,α
2
,α
3
都是n维非零向量,证明:α
1
,α
2
,α
3
线性无关
对任何数s,t,α
1
+sα
3
,α
2
+tα
3
都线性无关.
选项
答案
“→”用定义法也不麻烦(请读者自己做),但是用C矩阵法更加简单. α
1
+sα
3
,α
2
+tα
3
对α
1
,α
2
,α
3
的表示矩阵为 [*] 显然对任何数s,t,C的秩都是2,于是α
1
+sα
3
,α
2
+tα
3
的秩为2,线性无关. “←”在s=t=0时,得α
1
,α
2
线性无关,于是(根据定理3.2)只要再证明α
3
不可用α
1
,α
2
线性表 示.用反证法.如果α
3
可以用α
1
,α
2
线性表示,设 α
3
=c
1
α
1
+c
2
α
2
,则因为α
3
不是零向量,c
1
,c
2
不能全为0.不妨设c
1
≠0,则有 [*] 于是[*],α
2
线性相关,即当[*]时α
1
+sα
3
,α
2
+tα
3
相关,与条件矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/6OH4777K
0
考研数学三
相关试题推荐
设u=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数.证明:.
设y=y(x)由方程ey+6xy+x2一1=0确定,求y"(0).
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中(1)求正交变换X=QY将二次型化为标准形;(2)求矩阵A.
设A,B皆为n阶矩阵,则下列结论正确的是().
就a,b的不同取值,讨论方程组解的情况.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f"(x)>g"(x)(x>a).证明:当x>a时,f(x)>g(x).
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
随机试题
结核杆菌侵犯肠道的主要途径是
上题所述病例治疗宜
测定有孔材料的密度时,应把材料按下列哪种方法加工,干燥后用比重瓶测定其体积?[1998年第028题]
下列各项中适用于划分各会计期间收入和费用的原则是()。
下列属于设立证券公司应具备的条件有()。
下列选项中,关于个人独资企业的说法错误的是()。
下列各项中,属于企业高级管理层制定的战略有()。
科技发展对教育的作用表现在哪些方面?
××市政府印发关于①×府〔2015〕151号各市、区人民政府,××工业园区,××高新区管委会、市各委办局,各直属单位;②为深入贯彻落实《××市人民政府职能转变和机构改革实施意
妄想是指一种病态的信念,尽管不符合事实,但仍坚信不疑。根据上述定义,下列属于妄想的是()。
最新回复
(
0
)