首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=________.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=________.
admin
2016-09-13
44
问题
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=________.
选项
答案
na
解析
令x=-1,则f(1)=f(-1)+f(2),因f(x)是奇函数,得到
f(2)=f(1)-f(-1)=2f(1)=2a.
再令x=1,则f(3)=f(1)+f(2)=3f(1)=3a,现用数学归纳法证明f(n)=na.
当n=1,2,3时,已知或者已证.假设n≤k时,有f(k)=ka.
当n=k+1时,
f(k+1)=f(k-1)+f(2)=(k-1)a+2a=(k+1)a,
故对一切正整数n,有f(n)=na.
令x=0,则f(2)=f(0)+f(2),即f(0)=0=0×a,又f(x)是奇函数,故对一切负整数n有
f(n)=-f(-n)=-(-na)=na.
所以对一切整数n,均有f(n)=na.
转载请注明原文地址:https://kaotiyun.com/show/6RT4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
连续投掷一枚均匀硬币10次,求其中有3次是正面的概率.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
求下列均匀薄片或均匀物体对指定直线的转动惯量:(1)边长为a与b的矩形薄片对两条边的转动惯量;(2)轴长为2a与2b的椭圆形薄片对两条轴的转动惯量;(3)半径为a的球体对过球心的直线及对与球体相切的直线的转动惯量;(4)半径为a,高为h的圆柱体对过
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
求下列曲线所围成的图形的面积:(1)ρ=asin3φ;(2)ρ2=a2cos2φ.
设函数f(x)在[0,+∞)上连续、单调不减且f(0)≥0,试证函数在[0,+∞)上连续且单调不减(其中n>0).
随机试题
对接接头的应力集中主要是由()引起的。
A、新药B、首次在中国销售的药品C、非处方药D、医疗机构配制的制剂E、中药;根据《中华人民共和国药品管理法》不得在市场销售或变相销售的药品是
当出现()时,结构混凝土应该进行无损检测以确定结构混凝土的强度。
( )是指允许纳税人用一些费用开支或已交纳的其他税款直接冲减其应纳税额的减免税措施。
国有企业、集体企业及其他所有制形式的企业经重组改制为股份有限公司后,可向中国证监会提出境外上市申请,申请条件有( )。
个人汽车贷款的贷后与档案管理工作包括()。
我们坚持倡导()的社会主义核心价值观。
下列关于生活中的物理知识的叙述,正确的有()。
简述债的概括承受的发生原因。
Britain’suniversitiesareinanawfulspin.Topuniversitieswereoverwhelmedbythe24%ofA-levelapplicantswithindistingui
最新回复
(
0
)