首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)有任意阶导数且f’(x)=f3(x),则f(n)(x)=__________.
设f(x)有任意阶导数且f’(x)=f3(x),则f(n)(x)=__________.
admin
2017-05-10
49
问题
设f(x)有任意阶导数且f’(x)=f
3
(x),则f
(n)
(x)=__________.
选项
答案
(2n一1)!!f
2n+1
(x)
解析
用归纳法.由f’(x)=f
3
(x)=1.f
3
(x)求导得
f’’(x)=1.3f
2
(x)f’(x)=1.3f
5
(x),再求导又得
f’’’(x)=1.3.5f
4
(x)f’(x)=1.3.5f
7
(x),由此可猜想
f
(n)
(x)=1.3…(2n一1)f
(2n+1)
(x)=(2n—1)!!f
(2n+1)
(x)(n=1,2,3,…).
设n=k上述公式成立,则有
f
(k+1)
(x)=[f
(k)
(x)]’=[(2k一1)!!f
2k+1
(x)]’
=(2k一1)!!(2k+1)f
2k
(x)f’(x)=(2k+1)!!f
2k+3
(x),
由上述讨论可知当n=1,2,3,…时
f
(n)
(x)=(2n一1)!!f
2n+1
(x)成立.
转载请注明原文地址:https://kaotiyun.com/show/6WH4777K
0
考研数学三
相关试题推荐
[*]
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
判断下列函数组是否线性无关:(1)x,x+1;(2)0,x,ex;(3)ex,ex+1;(4)ex,e2x;(5)x,lnx;(6)sinx,cosx.
根据已知条件,写出下列各函数的表达式:(1)f(x,y)=xy+yx,求f(xy,x+y);(3)f(x,y)=x+2y,求f(xy,f(x,y));(4)f(x+y,y/x)=x2-y2,求f(x,y).
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
求微分方程y〞ˊ-yˊ=0的一条积分曲线,使此积分曲线在原点处有拐点,且以直线y=2x为切线.
设总体X服从(0,θ](θ>0)上的均匀分布,X1,X2,…,Xn是来自总体X的样本,求θ的最大似然估计量与矩估计算.
设总体X服从正态分布N(μ1,σ2),总体Y服从正态分布N(μ2,σ2),X1,X2,…,Xn和Y1,Y2…,Yn分别是来自X和Y的简单随机样本,则=_________.
设总体X的概率分布为其中参数θ未知且从总体X中抽取一个容量为8的简单随机样本,其8个样本值分别是1,0,1,一1,1,1,2,1.试求:θ的最大似然估计值;
随机试题
下列骨折中,最不稳定的是
下列选项中,可作为清洁生产中的新用水量指标的是()。
会计职业道德教育的途径有()。
HACCP是()的缩写,它是一个保证食品安全的预防性管理体系。
学生在课堂上向你提出一个意想不到又很有价值的问题,你不能马上做出正确的解答。这时,正确的做法是()。
贝加尔湖曾是中国古代北方游牧民族主要活动地区,汉代苏武牧羊之地,《中俄尼布楚条约》签订以后划给俄国。()
根据以下资料,回答下列问题。下列说法正确的是()。
表格国家中,2012年1~9月中国从亚洲国家(地区)进口消费品比从欧洲国家少()亿美元。
也许是看到了“群体智慧”所爆发的惊人力量,很多风险投资开始重新__________“人”的作用。与__________的新搜索技术相比,他们更愿意将赌注压在混合型搜索引擎的研发上,即利用人的智慧弥补机器算法的不足。这种搜索引擎有一个__________的名
HowtoWriteaBookReviewI.ThedefinitionofabookreviewA.adescriptiveandcriticalorevaluativeaccountofabookB.a
最新回复
(
0
)