首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
根据下列内容进行教学过程的设计. 3.3.1 二元一次不等式(组)与平面区域 在现实生活和教学中,我们会遇到各种不同的不等关系,需要用不同的教学模型来刻画和研究它们,前面我们学习了一元一次不等式及其解法,这里我们将学习另一种
根据下列内容进行教学过程的设计. 3.3.1 二元一次不等式(组)与平面区域 在现实生活和教学中,我们会遇到各种不同的不等关系,需要用不同的教学模型来刻画和研究它们,前面我们学习了一元一次不等式及其解法,这里我们将学习另一种
admin
2018-01-26
57
问题
根据下列内容进行教学过程的设计.
3.3.1 二元一次不等式(组)与平面区域
在现实生活和教学中,我们会遇到各种不同的不等关系,需要用不同的教学模型来刻画和研究它们,前面我们学习了一元一次不等式及其解法,这里我们将学习另一种不等关系的模型.
先看一个实际例子.
一家银行的信贷部计划年初投入25 000 000元用于企业和个人贷款,希望这笔资金至少可带来30 000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%.那么,信贷部应该如何分配资金呢?
这个问题中存在一些不等关系,我们应该用什么不等式模型来刻画它们呢?
设用于企业贷款的资金为x元,用于个人贷款的资金为y元,由资金总数为25 000 000元,得到
x+y≤25 000 000 ① (我们把含有两个未知数,并且未知数的次数是1的不等式称为二元一次不等式.)
由于预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上,所以
(12%)x+(10%)y≥30 000,
即
12x+10y≥3 000 000. ②
最后考虑到用于企业贷款和个人贷款的资金数额都不能是负值,于是
x≥0, y≥0 ③
将①②③合在一起,得到分配资金应该满足的条件:
(我们把由几个二元一次不等式组成的不等式组称为二元一次不等式组.)
满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.有序数对可以看成直角坐标平面内点的坐标.于是,二元一次不等式(组)的解集就可以看成成直角坐标系内的点构成的集合.
思考?
我们知道,一元一次不等式(组)的解集可以表示为数轴上的区间,例如,
的解集为数轴山的一个区间(图3.3.1),那么,在直角坐标系内,二元一次不等式(组)的解集表示什么图形呢?
我们不妨先研究一个具体的二元一次不等式
x-y<6
的解集所表示的图形。
如图3.3.2,在平面直角坐标系中,x-y=6表示一条直线.平面内所有的点被直线x-y=6分成三类:在直线x-y=6上的点;在直线x-y=6左上方的区域内的点;在直线x-y=6右下方的区域内的点.
设点P(x,y
1
)是直线l上的点,选取点A(x,y
2
),使它的坐标满足不等式x-y<6,填表3-1,并在图3.3.2中标出点P和点A.
探究?
当点A与点P有相同的横坐标时,他们的纵坐标有什么关系?据此说说,直线l左上方点的坐标与不等式x-y<6有什么关系?直线l右下方点的坐标呢?
对于直线Ax+By+C=0同一侧的所有点,把它的坐标(x.y)代入Ax+By+C.所得的符号都相同.因此只需在直线Ax+By+C=0的同一侧取某个特殊点(x
0
,y
0
)作为测试点.由Ax
0
+By
0
+C的符号就可以断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.下面我们看几个例子.
选项
答案
[创设问题情境] 问题1:在平面直角坐标系中,二元一次方程x+y-2=0表示什么图形?请学生画出来. 问题2:写出以二元一次方程x+y-2=0的解为坐标的点的集合 (引出点集{(x,y)|x+y-2=0}) 问题3:点集{(x,y)|x+y-2=0}在平面直角坐标系中表示什么图形? 点集{(x,y)|x+y-2>0}与点集{(x,y)|x+y-2<0}又表示什么图形? [讲授新课] 研究问题:在平面直角坐标系中,以二元一次不等式x+y-2>0的解为坐标的点的集合{(x,y)|x+y-2>0}是什么图形? 引导提问:x+y-2≠0的点在哪里?生:直线x+y-2=0外. 提问:x+y-2≠0有哪些情况?生:x+y-2>0或x+y-2<0. 师:在平面直角坐标系中,所有的点被直线x+y-2=0分成三类:即在直线x+y-2=0上;在直线x+y-2=0的左下方的平面区域内;在直线x+y-2=0的右上方的平面区域内. 师:x+y-2>0或x+y-2<0究竟分别在直线x+y-2=0的哪侧呢? 一、学生实验 师:1、2两组学生合为A组.3、4两组学生合为B组, A组学生:取右上方的点计算x+y-2的值并判断满足哪个关系? B组学生:取左下方的点计算x+y-2的值并判断满足哪个关系? 二、学生猜想 A组:直线x+y-2=0右上方的任意点(x,y)满足x+y-2>0. B组:直线x+y-2=0左下方的任意点(x,y)满足x+y-2<0. 三、证明猜想 在直线x+y-2=0上任取一点P(x
0
,y
0
),过点P作垂直于x轴的直线y=y
0
.在x=x
0
的直线上位于直线x+y-2=0右侧的任意一点(x,y),都有x=x
0
,y>y
0
, 所以,x+y>x
0
+y
0
, 所以,x+y-2>x
0
+y
0
-2=0, 即x+y-2>0, 因为点P(x
0
,y
0
)是直线x+y-2=0上的任意点, 所以,对于直线x+y-2=0右上方的任意点(x,y),满足x+y-2>0. 同理,对于直线x+y-2=0左下方的任意点(x,y),满足x+y-2<0. 所以,在平面直角坐标系中,以二元一次不等式x+y-2>0的解为坐标的点的集合{(x,y)|x+y-2>0}是直线x+y-2=0右上方的平面区域, 类似地,在平面直角坐标系中,以二元一次不等式x+y-2<0的解为坐标的点的集合{(x,y)|x+y-2<0)是直线x+y-2=0左下方的平面区域. 提问:将直线x+y-2=0的两侧的点的坐标代入到x+y-2中,得到的数值的符号,仍然会“同侧同号,异侧异号”吗? 通过分析引导学生得出一般二元一次不等式表示平面区域的有关结论. 四、一般二元一次不等式表示平面区域 结论:在平面直角坐标系中, (1)二元一次不等式Ax+By+C>0表示直线Ax+By+C=0某一侧所有点组成的平面区域,Ax+By+C<0则表示直线另一侧所有点组成的平面区域;(同侧同号,异侧异号) (2)有等则实,无等则虚; (3)取点定域,原点优先. 五、应用举例 例1:画出不等式2x+y-6<0表示的平面区域. 解:先画直线2x+y-6=0(画成虚线). 取原点(0,0),代入到2x+y-6中,因为2×0+0-6<0,所以原点在2x+y-6<0表示的平面区域内,不等式2x+y-6<0表示的区域如图: [*] 反思归纳: 画二元一次不等式表示的平面区域的方法和步骤: (1)画线定界(注意实、虚线); (2)取点定域,原点优先. [*] 例2:画出不等式组[*]表示的平面区域. 分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分. 练习:课本上的练习题1、2、3. 六、课堂小结 1.二元一次不等式在平面直角坐标系中表示平面区域. 2.判断二元一次不等式表示的具体的平面区域的步骤: (1)画直线定界(要注意实、虚线),简称:定界; (2)用特殊点定区域. 3.画二元一次不等式组表示的平面区域的方法: (1)画直线(注意虚实); (2)取点定域,原点优先; (3)画出公共区域. 七、布置作业:习题3.3 A组 第1题、第2题.
解析
转载请注明原文地址:https://kaotiyun.com/show/6iIq777K
本试题收录于:
中学数学题库教师公开招聘分类
0
中学数学
教师公开招聘
相关试题推荐
每个人的DNA都不完全相同,可以像指纹一样用来识别身份,这种方法称为DNA指纹技术。下列各项活动中,不能通过DNA指纹技术来实现的是()
在前人进行的下列研究中,采用的核心技术相同或相似的一组是()①证明光合作用所释放的氧气来自于水②用紫外线等处理青霉菌选育高产青霉素菌株③用T2噬菌体侵染大肠杆菌证明DNA是遗传物质④用甲基绿和吡罗红对细胞染色,观察核酸的分布
如图为人体消化系统的部分结构示意图,下列叙述不正确的是()
依法执教就是教师要依据法律法规履行教书育人的职责。下列选项中,体现教师进行依法执教的是()
为验证卤素单质氧化性的相对强弱,某小组用下图所示装置进行实验(夹持仪器已略去,气密性已检验)。实验过程:Ⅰ.打开弹簧夹,打开活塞a,滴加浓盐酸。Ⅱ.当B和C中的溶液都变为黄色时,夹紧弹簧夹。Ⅲ.当B中溶液由黄色变为棕红色时
化学与能源开发、环境保护、资源利用等密切相关。下列说法正确的是()。
一种知识、技能对另一种知识、技能的掌握产生消极影响叫做()。
教师劳动的特点是什么?
小芳的父母均为大学毕业生,从小受家庭的影响,很重视学习,初中期间,当她自己在看书学习时,旁边如果有人讲话,就特别反感。进入高中后,小芳成绩优秀,担任了班长,但同学们都认为她自以为是,什么工作都必须顺着她的思路和想法,一些同学很讨厌她,为此她感到十分的苦恼。
什么是数学思想方法?在中学数学教学中如伺渗透数学思想方法?
随机试题
铆钉又哪两部分组成?
A.先煎B.鲜品加倍C.久煎D.后下佩兰入煎剂宜
A.质坚硬,难折断,断面黄棕色B.质坚硬,横断面深绿色至棕色,可见黄白色维管束5~13个,环列C.质硬脆,易折断,断面平坦,淡黄棕色,角质样,可见白色小点排列成2~4轮D.质坚实,断面红棕色或黄棕色,颗粒性,可见“星点”E.质坚硬,不易折断,断面浅
血液制品生产单位生产国内已经生产的品种,必须依法向哪个部门申请批准文号
甲状腺形成后,甲状舌管即逐渐退化,如有上皮残留,则可发生()。
依据《建设项目环境保护分类管理名录》,位于环境敏感区的建设项目的环境影响特征对该敏感区域环境保护目标不造成主要环境影响,则其环境影响评价()。
个人所得税的规定中,财产转让所得适用( )的比例税率。
企业发生的交易或事项所涉及的下列税费,应计入固定资产入账成本的有()。
根据“多证合一、一照一码”的规定,下列证件属于“多证合一、一照一码”范围的有()。
数据库管理系统中的数据操作语言(DML)所实现的操作主要有______。
最新回复
(
0
)