首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
根据下列内容进行教学过程的设计. 3.3.1 二元一次不等式(组)与平面区域 在现实生活和教学中,我们会遇到各种不同的不等关系,需要用不同的教学模型来刻画和研究它们,前面我们学习了一元一次不等式及其解法,这里我们将学习另一种
根据下列内容进行教学过程的设计. 3.3.1 二元一次不等式(组)与平面区域 在现实生活和教学中,我们会遇到各种不同的不等关系,需要用不同的教学模型来刻画和研究它们,前面我们学习了一元一次不等式及其解法,这里我们将学习另一种
admin
2018-01-26
54
问题
根据下列内容进行教学过程的设计.
3.3.1 二元一次不等式(组)与平面区域
在现实生活和教学中,我们会遇到各种不同的不等关系,需要用不同的教学模型来刻画和研究它们,前面我们学习了一元一次不等式及其解法,这里我们将学习另一种不等关系的模型.
先看一个实际例子.
一家银行的信贷部计划年初投入25 000 000元用于企业和个人贷款,希望这笔资金至少可带来30 000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%.那么,信贷部应该如何分配资金呢?
这个问题中存在一些不等关系,我们应该用什么不等式模型来刻画它们呢?
设用于企业贷款的资金为x元,用于个人贷款的资金为y元,由资金总数为25 000 000元,得到
x+y≤25 000 000 ① (我们把含有两个未知数,并且未知数的次数是1的不等式称为二元一次不等式.)
由于预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上,所以
(12%)x+(10%)y≥30 000,
即
12x+10y≥3 000 000. ②
最后考虑到用于企业贷款和个人贷款的资金数额都不能是负值,于是
x≥0, y≥0 ③
将①②③合在一起,得到分配资金应该满足的条件:
(我们把由几个二元一次不等式组成的不等式组称为二元一次不等式组.)
满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.有序数对可以看成直角坐标平面内点的坐标.于是,二元一次不等式(组)的解集就可以看成成直角坐标系内的点构成的集合.
思考?
我们知道,一元一次不等式(组)的解集可以表示为数轴上的区间,例如,
的解集为数轴山的一个区间(图3.3.1),那么,在直角坐标系内,二元一次不等式(组)的解集表示什么图形呢?
我们不妨先研究一个具体的二元一次不等式
x-y<6
的解集所表示的图形。
如图3.3.2,在平面直角坐标系中,x-y=6表示一条直线.平面内所有的点被直线x-y=6分成三类:在直线x-y=6上的点;在直线x-y=6左上方的区域内的点;在直线x-y=6右下方的区域内的点.
设点P(x,y
1
)是直线l上的点,选取点A(x,y
2
),使它的坐标满足不等式x-y<6,填表3-1,并在图3.3.2中标出点P和点A.
探究?
当点A与点P有相同的横坐标时,他们的纵坐标有什么关系?据此说说,直线l左上方点的坐标与不等式x-y<6有什么关系?直线l右下方点的坐标呢?
对于直线Ax+By+C=0同一侧的所有点,把它的坐标(x.y)代入Ax+By+C.所得的符号都相同.因此只需在直线Ax+By+C=0的同一侧取某个特殊点(x
0
,y
0
)作为测试点.由Ax
0
+By
0
+C的符号就可以断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.下面我们看几个例子.
选项
答案
[创设问题情境] 问题1:在平面直角坐标系中,二元一次方程x+y-2=0表示什么图形?请学生画出来. 问题2:写出以二元一次方程x+y-2=0的解为坐标的点的集合 (引出点集{(x,y)|x+y-2=0}) 问题3:点集{(x,y)|x+y-2=0}在平面直角坐标系中表示什么图形? 点集{(x,y)|x+y-2>0}与点集{(x,y)|x+y-2<0}又表示什么图形? [讲授新课] 研究问题:在平面直角坐标系中,以二元一次不等式x+y-2>0的解为坐标的点的集合{(x,y)|x+y-2>0}是什么图形? 引导提问:x+y-2≠0的点在哪里?生:直线x+y-2=0外. 提问:x+y-2≠0有哪些情况?生:x+y-2>0或x+y-2<0. 师:在平面直角坐标系中,所有的点被直线x+y-2=0分成三类:即在直线x+y-2=0上;在直线x+y-2=0的左下方的平面区域内;在直线x+y-2=0的右上方的平面区域内. 师:x+y-2>0或x+y-2<0究竟分别在直线x+y-2=0的哪侧呢? 一、学生实验 师:1、2两组学生合为A组.3、4两组学生合为B组, A组学生:取右上方的点计算x+y-2的值并判断满足哪个关系? B组学生:取左下方的点计算x+y-2的值并判断满足哪个关系? 二、学生猜想 A组:直线x+y-2=0右上方的任意点(x,y)满足x+y-2>0. B组:直线x+y-2=0左下方的任意点(x,y)满足x+y-2<0. 三、证明猜想 在直线x+y-2=0上任取一点P(x
0
,y
0
),过点P作垂直于x轴的直线y=y
0
.在x=x
0
的直线上位于直线x+y-2=0右侧的任意一点(x,y),都有x=x
0
,y>y
0
, 所以,x+y>x
0
+y
0
, 所以,x+y-2>x
0
+y
0
-2=0, 即x+y-2>0, 因为点P(x
0
,y
0
)是直线x+y-2=0上的任意点, 所以,对于直线x+y-2=0右上方的任意点(x,y),满足x+y-2>0. 同理,对于直线x+y-2=0左下方的任意点(x,y),满足x+y-2<0. 所以,在平面直角坐标系中,以二元一次不等式x+y-2>0的解为坐标的点的集合{(x,y)|x+y-2>0}是直线x+y-2=0右上方的平面区域, 类似地,在平面直角坐标系中,以二元一次不等式x+y-2<0的解为坐标的点的集合{(x,y)|x+y-2<0)是直线x+y-2=0左下方的平面区域. 提问:将直线x+y-2=0的两侧的点的坐标代入到x+y-2中,得到的数值的符号,仍然会“同侧同号,异侧异号”吗? 通过分析引导学生得出一般二元一次不等式表示平面区域的有关结论. 四、一般二元一次不等式表示平面区域 结论:在平面直角坐标系中, (1)二元一次不等式Ax+By+C>0表示直线Ax+By+C=0某一侧所有点组成的平面区域,Ax+By+C<0则表示直线另一侧所有点组成的平面区域;(同侧同号,异侧异号) (2)有等则实,无等则虚; (3)取点定域,原点优先. 五、应用举例 例1:画出不等式2x+y-6<0表示的平面区域. 解:先画直线2x+y-6=0(画成虚线). 取原点(0,0),代入到2x+y-6中,因为2×0+0-6<0,所以原点在2x+y-6<0表示的平面区域内,不等式2x+y-6<0表示的区域如图: [*] 反思归纳: 画二元一次不等式表示的平面区域的方法和步骤: (1)画线定界(注意实、虚线); (2)取点定域,原点优先. [*] 例2:画出不等式组[*]表示的平面区域. 分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分. 练习:课本上的练习题1、2、3. 六、课堂小结 1.二元一次不等式在平面直角坐标系中表示平面区域. 2.判断二元一次不等式表示的具体的平面区域的步骤: (1)画直线定界(要注意实、虚线),简称:定界; (2)用特殊点定区域. 3.画二元一次不等式组表示的平面区域的方法: (1)画直线(注意虚实); (2)取点定域,原点优先; (3)画出公共区域. 七、布置作业:习题3.3 A组 第1题、第2题.
解析
转载请注明原文地址:https://kaotiyun.com/show/6iIq777K
本试题收录于:
中学数学题库教师公开招聘分类
0
中学数学
教师公开招聘
相关试题推荐
夏季高温时段,用较低温度的地下水灌溉,容易导致农作物萎蔫。其主要原因是()
下列与抗利尿激素有关的叙述,错误的是()
下列叙述错误的是()
科学的研究方法是取得成功的关键,下列研究中没有运用假说一演绎法的是()
有A、B、C、D四种单质,在一定条件下,A、B、C分别跟D发生化合反应生成甲、乙、丙(甲、乙、丙每个分子中都含有10个电子),而B跟C发生化合反应生成丁,这些单质和化合物之间发生如下图所示的反应关系:写出下列物质的分子式:甲______,乙_
碘被称为“智力元素”,科学合理地补充碘可防止碘缺乏病。碘酸钾(KIO3)是国家规定的食盐加碘剂,它的晶体为白色,可溶于水。碘酸钾在酸性介质中与过氧化氢或碘化物作用均生成单质碘。以碘为原料,通过电解制备碘酸钾的实验装置如图所示。请回答下列问题:
《中华人民共和国教师法》明确规定:教师进行教育教学活动,开展教育教学改革和实验,从事科学研究,是每个教师的()。
化合物E常用于制备抗凝血药,可以通过如图所示路线合成。请回答下列问题:写出由CH3COCl与C反应制取D的化学方程式________。
化合物E常用于制备抗凝血药,可以通过如图所示路线合成。请回答下列问题:A可以由电石气生产而成,请写出以电石气为原料制备A的化学方程式:________。
讲授数学教学模式的基本操作过程有五个环节,分别为组织教学——讲授新课一一________——小结、布置作业.
随机试题
车辆在高速公路以每小时100公里的速度行驶时,100米以上为安全距离。
简述商业利润的形成与来源。
______hadIreachedschoolthanthebellrang.
DIC时血液凝固功能异常表现的一般律是
黄疸伴右上腹部阵发性饺痛见于哪种疾病
5岁女孩,咳嗽1周,气促,精神正常,食欲尚可,无明显异物史,查体:体温8℃,双肺呼吸音粗糙及有不固定的干湿啰音,胸部X线显示,肺纹理增粗,根据病例诊断最大的可能是
()方法是会计方法的基础。
书籍对于()相当于冰箱对于()
上海商务总会
某生产企业为增值税一般纳税人,2011年10月份的生产经营情况如下:(1)进口原材料一批,支付给国外买价100万元,包装材料10万元,到达我国海关以前的运输装卸费6万元、保险费9万元,从海关运往企业所在地支付运输费5万元;(2)进口两台
最新回复
(
0
)