首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 设 若α,β正交且均为单位向量,证明f在正交变换下的标准形为
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 设 若α,β正交且均为单位向量,证明f在正交变换下的标准形为
admin
2016-05-31
70
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
设
若α,β正交且均为单位向量,证明f在正交变换下的标准形为
选项
答案
设A=2αα
T
+ββ
T
,由已知|α|=1,β
T
α=0,则 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
1
=2的特征向量; Aβ=(2αα
T
+ββ
T
)β=2αα
T
β+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量. 而矩阵A的秩 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值. 故f在正交变换下的标准形为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/7LT4777K
0
考研数学三
相关试题推荐
与国家、公民两个层面上下衔接,成为推进社会治理创新根本遵循的社会价值取向是()。
材料1 犯着革命急性病的同志们不切当地看大了革命的主观力量,而看小了反革命力量。这种估量,多半是从主观主义出发的。其结果,无疑义地是要走上盲动主义的道路。另一方面,如果把革命的主观力量看小了,这也是一种不切当的估量,又必然要产生另一方面的坏结果。因此,
材料1 (天津解放后)有一次座谈,一位资本家问道:“我现在开工厂,有剥削,是有罪的。我还准备多开几家,那不是罪更大了吗?……”刘少奇回答:“你开的厂是有剥削,你用剥削来的资本再开几家厂,将来,交给国家……这样的剥削是有功的。……”这一段话后来被概括为“
中国是一个有着几千年法律发展史的文明古国,产生过独具特色而又博大精深的法律思想。中国传统法律思想既是社会主义法治理念产生的文化背景和历史土壤,又为社会主义法治理念提供了思想元素和文化资源。“徒善不足以为政,徒法不能以自行”这体现的是今天全面推进依法治国中的
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×x中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,...,xn)=Aij/丨A丨xixj.二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
设实对称矩阵,求可逆矩阵P,使P-1AP为对角形矩阵,并计算行列式丨A-E丨的值.
随机试题
Wheredoesthemanenjoygettinghisnewsfrom?
预防子宫脱垂不正确的是
托海公司是一家股份有限公司,但是还没有上市,股东大会决定改选5名董事,该公司章程规定选举董事实行累积投票制,则下列对其说法正确的是:
甲、乙(户籍地均为M省A市)共同运营一条登记注册于A市的远洋渔船。某次在公海捕鱼时,甲乙二人共谋杀害了与他们素有嫌隙的水手丙。该船回国后首泊于M省B市港口以作休整,然后再航行至A市。从B市起航后,在途经M省C市航行至A市过程中,甲因害怕乙投案自首一直将乙捆
物业管理合同的签订不允许有偿有限期的承诺。()
生产经营单位的安全生产管理应有必要的组织保障,一般包括()
你可以随时愚弄某些人。假若以上属实,以下哪些判断必然为真?Ⅰ.张三和李四随时都可能被你愚弄。Ⅱ.你随时都想愚弄人。Ⅲ.你随时都可能愚弄人。Ⅳ.你只能在某些时候愚弄人。Ⅴ.你每时每刻都在愚弄人。
VBA中定义符号常量应使用的关键字是()。
汇编语言是一种()。
Wherearetheytalking?
最新回复
(
0
)