首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设数列{an}单调减少,(n=1,2,…)无界,则幂级数an(x-1)n的收敛域为 ( )
设数列{an}单调减少,(n=1,2,…)无界,则幂级数an(x-1)n的收敛域为 ( )
admin
2016-09-13
46
问题
设数列{a
n
}单调减少,
(n=1,2,…)无界,则幂级数
a
n
(x-1)
n
的收敛域为 ( )
选项
A、(-1,1]
B、[-1,1)
C、[0,2)
D、(0,2]
答案
C
解析
本题主要考查交错级数的莱布尼茨判别法和幂级数的收敛区间、收敛域的概念,是一道综合了多个知识点的考题.
因数列{a
n
}单调减少,且
=0,故根据莱布尼茨判别法知,交错级数
(-1)
n
a
n
收敛,即幂级数
a
n
(x-1)
n
在x=0处条件收敛;
又S
n
=
a
k
(n=1,2,…)无界,所以幂级数
a
n
(x-1)
n
在x=2处发散;
综上,幂级数
a
n
(x-1)
n
的收敛域为[0,2),故答案应选(C).
转载请注明原文地址:https://kaotiyun.com/show/7RT4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
若幂级数在x=-1处收敛,则此级数在x=2处().
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
已知线性方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的逋解,并说明理由.
设n阶矩阵A与B等价,则必有().
随机试题
6个月女孩,中度脱水酸中毒,经纠正酸中毒与补液12小时后出现嗜睡,呼吸较前为浅,心音低钝,心率160次/分,腹胀,肠鸣音弱,血钠为135mmol/L
原则型谈判法
德国的法兰克福是西欧人口最稠密的地区之一。
某生产化妆品的跨国公司,为使产品打进中国市场,在对中国市场进行深入调查分析后,决定以白领女性顾客群体作为其目标市场,集中营销。由于化妆品市场竞争激烈,为使自己的产品获得稳定的销路,该公司着力培养自己产品的特色,决定采取差别化的产品策略以区别于其他竞争对手。
关于建筑构造研究的内容,下列叙述中()是正确的。
个人从公开发行和转让市场取得的上市公司股票,持股期限在1个月以内的,其股息红利所得按()计人应纳税所得额。
在公司证券中,通常将银行及非银行金融机构发行的证券称为()。
求.
男性从事“女性”职业——1988年英译汉及详解SeatedbehindthefrontdeskataNewYorkfirm,thereceptionistwasefficient.Stylishlydressed,the
Bynow,howtheimmunesystemisaffectedbystresshasbeenwell-documented.Inonestudy【C1】______newlywedcouples,forexampl
最新回复
(
0
)