首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E+αβT,其中α=[α1,α2,…,αn]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. 求A的特征值和特征向量;
设A=E+αβT,其中α=[α1,α2,…,αn]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2. 求A的特征值和特征向量;
admin
2021-07-27
516
问题
设A=E+αβ
T
,其中α=[α
1
,α
2
,…,α
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
求A的特征值和特征向量;
选项
答案
设(E+αβ
T
)ξ=λξ.① ①式两端左乘β
T
,得β
T
(E+αβ
T
)ξ=(β
T
+β
T
αβ
T
)ξ=(1+β
T
α)β
T
ξ=λβ
T
ξ.若β
T
ξ≠0,则λ=1+β
T
α=3;若β
T
ξ=0,则由①式,得λ=1.当λ=1时,[*]即[b
1
,b
2
,…,b
n
]x=0,因α≠0,β≠0,设b
1
≠0,则η
1
=[b
2
-b
1
,0,…,0]
T
,ξ
2
[b
3
,0,-b
1
,…,0]
T
,…,ξ
n-1
=[b
n
,0,…,0,-b
1
]
T
;故属于特征值λ=1的全体特征向量为k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-
,其中k
1
,k
2
,…,k
n-1
为不全为零的任意常数.当λ=3时,(3E-A)x=(2Eαβ
T
)x=0,ξ
n
=α-[α
1
,α
2
…,α
n
]
T
.故属于特征值λ=3的全体特征向量为k
n
ξ
n
,k
n
为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Uy4777K
0
考研数学二
相关试题推荐
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设α1=(1,2,3,1)T,α2=(3,4,7,一1)T,α3=(2,6,a,b)T,α4=(0,1,3,a)T,那么a=8是α1,α2,α3,α4线性相关的()
设A是n阶矩阵,下列命题错误的是().
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt。证明∫abxf(x)dx≤∫abxg(x)dx。
若向量组α,β,γ线性无关,α,β,δ线性相关,则
设y1(x)、y2(x)为二阶变系数齐次线性方程y"+p(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A-1~B-1.正确命题的个数为()
随机试题
方志时期
冰心1921年所参加的文学社团是_________。冰心走上文坛是以_________小说起步的。冰心擅长写散文,其文体自成一家,被读者誉为“_________”。
该患者最可能诊断是目前对该患者治疗不恰当的是
根据《票据法》规定,允许背书转让的票据是()。
通过国内销售价格、向第三国出口的价格、结构价格三种方法确定正常价值仅适用于市场经济国家。()
家庭风险管理规划主要是指()。
边际消费倾向递减规律是在()中提出来的。
税收的基本特征有()。
在程序设计阶段应该采取()和逐步求精的方法,把一个模块的功能逐步分解,细化为一系列具体的步骤,进而用某种程序设计语言写成程序。
Ournationmustdefendthesanctityofmarriage.
最新回复
(
0
)