首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有二阶导数,且fˊˊ(x)>0.又设u(t)在区间[0,a](或[a,0])上连续.证明:
设f(x)具有二阶导数,且fˊˊ(x)>0.又设u(t)在区间[0,a](或[a,0])上连续.证明:
admin
2016-09-13
58
问题
设f(x)具有二阶导数,且fˊˊ(x)>0.又设u(t)在区间[0,a](或[a,0])上连续.证明:
选项
答案
由泰勒公式 f(x)=f(x
0
)+fˊ(x
0
)(x-x
0
)+[*]fˊˊ(ξ)(x-x
0
)
2
≥f(x
0
)+fˊ(x
0
)(x-x
0
),ξ介于x与x
0
之间. 以x=u(t)代入并两边对t从0到a积分,其中暂设a>0,于是有 ∫
0
a
f[u(t)]dt≥af(x
0
)+fˊ(x
0
)[∫
0
a
u(t)dt-x
0
a]. 取x
0
=[*]∫
0
a
u(t)dt,于是得 ∫
0
a
f[u(t)]dt≥af[*] 即有 [*] 若a<0,则有 ∫
0
a
f[u(t)]dt≤af(x
0
)+fˊ(x
0
)[∫
0
a
u(t)dt-x
0
a]. 仍取x
0
=[*]∫
0
a
u(t)dt,有 [*]∫
0
a
f[u(t)]dt≥f(x
0
)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/8DT4777K
0
考研数学三
相关试题推荐
落花是一种自然现象,但在我国诗词中却赋予它们以情感与生命。“流水落花春去也,天上人间”表达了国破家亡之恨,无可奈何之情,“花自飘零水自流,一种相思,两处闲愁”抒发了浓浓的郁闷之情,幽幽的相思之苦。落花的意象反映的是()。
A、 B、 C、 D、 C
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
有一立体,底面是长轴为2a,短轴为2b的椭圆,而垂直于长轴的截面都是等边三角形,求其体积.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设函数f(x)住[0,+∞)上连续,单调不减且f(0)≥0.试证函数在[0,+∞)上连续且单调不减(其中n>0).
随机试题
关于婚姻成立的形式要件,当代各国有不同的立法例,其种类主要有____________、____________、____________。
成本核算业务与其他会计业务比较,其特点有()
A.清骨散B.知柏地黄丸C.清营汤D.黄连解毒汤E.五味消毒饮有清骨蒸潮热作用的方剂是
油风的临床特点是白疕的临床特点是
某市药厂进行药品生产活动时,违反相关法纪法规,由有关部门进行处罚。其中由省、自治区、直辖市食品药品监督管理部门不予批准再注册,并注销制剂批准文号的是下列哪种情形
目前,证券交易风险的种类主要有( )。
下列关于企业所得税收入的确认,表述正确的是()。
饭店所取得的星级表明该饭店的所有建筑物、设施设备及服务项目均处于同一标准。()
青春期性发育迟缓的可能原因是缺乏()。
试述外在性对经济效率的影响及其对策。
最新回复
(
0
)