首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(χ0-δ,χ0+δ)有n阶连续导数,且f(k)(χ0)=0,k=2,3,…,n-1;f(n)(χ0)≠0.当0<|h|<δ时,f(χ0+h)-f(χ0)=hf′(χ0+θh),(0<θ<1).求证:.
设f(χ)在(χ0-δ,χ0+δ)有n阶连续导数,且f(k)(χ0)=0,k=2,3,…,n-1;f(n)(χ0)≠0.当0<|h|<δ时,f(χ0+h)-f(χ0)=hf′(χ0+θh),(0<θ<1).求证:.
admin
2018-11-11
38
问题
设f(χ)在(χ
0
-δ,χ
0
+δ)有n阶连续导数,且f
(k)
(χ
0
)=0,k=2,3,…,n-1;f
(n)
(χ
0
)≠0.当0<|h|<δ时,f(χ
0
+h)-f(χ
0
)=hf′(χ
0
+θh),(0<θ<1).求证:
.
选项
答案
这里m=1,求的是f(χ
0
+h)-f(χ
0
)=hf′(χ
0
+θh)(0<θ<1)当h→0时中值θ的极限.为解出θ,按题中条件,将f′(χ
0
+θh)在χ=χ
0
展成带皮亚诺余项的n-1阶泰勒公式得 [*] 代入原式得 f(χ
0
+h)-f(χ
0
)=hf′(χ
0
)+[*]f
(n)
(χ
0
)θ
n-1
h
n
+o(h
n
) ① 再将f(χ
0
+h)在χ=χ
0
展成带皮亚诺余项的n阶泰勒公式 f(χ
0
+h)-f(χ
0
)=f′(χ
0
)h+…+[*]f
(n)
(χ)h
n
+o(h
n
) =f′(χ
0
)h+[*]f
(n)
(χ
0
)h
n
+o(h
n
)(h→0) ② 将②代入①后两边除以h
h
得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/8Dj4777K
0
考研数学二
相关试题推荐
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续.②f(x,y)在点(x0,y0)处两个偏导数连续.③f(x,y)在点(x0,y0)处可微.④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“”表示可由性质P推
设函数fi(x)(i=1,2)具有二阶连续导数,且fi(x0)
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
设f(x)在[a,b]上有连续的导数,证明
已知函数f(u,v)具有连续的二阶偏导数f(1,1)=2是f(u,v)的极值,已知z=f(x+y)f(x,y)].求
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
随机试题
在上升趋势中,将两个低点连成一条直线,得到()。
ANCA相关性血管炎主要包括________、________及________等。
(2005年)投资项目W的净现金流量如下:则项目W的静态投资回收期为()年。
某高速公路全长78km,双向六车道,路幅宽29m,设计车速120km/h,路面基层为水泥稳定土无机结合料基层,施工单位根据工程实际情况及人力、设备条件、采用了路拌法水泥稳定土基层施工工艺。摊铺水泥日进度1.5km(单向),某路段具体施工过程如下:(
客户下达的交易指令数量和买卖方向明确,没有成交价格的,应当视为()。
下列项目中,免征营业税的有()。
山东农民刘大成获得2010年度星光大道总冠军,2月20日下午,济宁市市中区召开表彰大会,对荣获央视星光大道2010年度总冠军的农民歌手刘大成授予“运河英才”、记三等功并给予10万元奖励。就此谈谈你的看法。
设随机变量X的概率密度为对X独立地重复观察4次,用Y表示观察值大于的次数,求Y2的数学期望.
Ping实用程序使用的是(11)协议。
【B1】【B7】
最新回复
(
0
)