首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(χ0-δ,χ0+δ)有n阶连续导数,且f(k)(χ0)=0,k=2,3,…,n-1;f(n)(χ0)≠0.当0<|h|<δ时,f(χ0+h)-f(χ0)=hf′(χ0+θh),(0<θ<1).求证:.
设f(χ)在(χ0-δ,χ0+δ)有n阶连续导数,且f(k)(χ0)=0,k=2,3,…,n-1;f(n)(χ0)≠0.当0<|h|<δ时,f(χ0+h)-f(χ0)=hf′(χ0+θh),(0<θ<1).求证:.
admin
2018-11-11
21
问题
设f(χ)在(χ
0
-δ,χ
0
+δ)有n阶连续导数,且f
(k)
(χ
0
)=0,k=2,3,…,n-1;f
(n)
(χ
0
)≠0.当0<|h|<δ时,f(χ
0
+h)-f(χ
0
)=hf′(χ
0
+θh),(0<θ<1).求证:
.
选项
答案
这里m=1,求的是f(χ
0
+h)-f(χ
0
)=hf′(χ
0
+θh)(0<θ<1)当h→0时中值θ的极限.为解出θ,按题中条件,将f′(χ
0
+θh)在χ=χ
0
展成带皮亚诺余项的n-1阶泰勒公式得 [*] 代入原式得 f(χ
0
+h)-f(χ
0
)=hf′(χ
0
)+[*]f
(n)
(χ
0
)θ
n-1
h
n
+o(h
n
) ① 再将f(χ
0
+h)在χ=χ
0
展成带皮亚诺余项的n阶泰勒公式 f(χ
0
+h)-f(χ
0
)=f′(χ
0
)h+…+[*]f
(n)
(χ)h
n
+o(h
n
) =f′(χ
0
)h+[*]f
(n)
(χ
0
)h
n
+o(h
n
)(h→0) ② 将②代入①后两边除以h
h
得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/8Dj4777K
0
考研数学二
相关试题推荐
求z=x+(y-1)arcsin在(0,1)点的偏导数.
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续.②f(x,y)在点(x0,y0)处两个偏导数连续.③f(x,y)在点(x0,y0)处可微.④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“”表示可由性质P推
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在η∈(一1,1),使得f’’(η)+f’(η)=1.
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
设f(x)在[a,b]上有连续的导数,证明
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
随机试题
obtainimbalancesprovidingtoexpandingasdistributorcrisisintoriskywhenassis
课堂教学主要是传授书本知识,使学生获得间接经验。()
采用糖皮质激素隔日疗法的目的是:
肥厚型心肌病患者,不属于安装植入型心脏复律除颤器的指征是
拔火罐最为常用而又不易烫伤皮肤的方法是
跟骨轴位摄影时,纵径与横径投影比例为
我国的知识产权的保护()。
某企业对外币业务采用发生当日的市场汇率进行核算,按月计算汇兑损益。6月10日销售价款为30万美元产品一批,货款尚未收到,当日的市场汇率为1美元=8.25元人民币。6月30日的市场汇率为1美元=8.28元人民币。7月31日市场汇率为1美元=8.23元人民币,
请用不超过200字的篇幅,概括出给定材料所反映的主要问题。要求:全面。有条理,有层次。从政府制定政策的角度,提出解决给定资料所反映问题的对策建议。要求:有针对性,有条理,切实可行。字数不超过350字。
《摩诃婆罗多》
最新回复
(
0
)