首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的一个基础解系为: (b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T. 试写出线性方程组的通解,并说明理由.
已知线性方程组的一个基础解系为: (b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T. 试写出线性方程组的通解,并说明理由.
admin
2017-06-26
46
问题
已知线性方程组
的一个基础解系为:
(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.
试写出线性方程组
的通解,并说明理由.
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的n个向量就是B的n个行向量的转置向量,因此,由(Ⅰ)的已知基础解系可知 AB
T
=O 转置即得BA
T
=O 因此可知A
T
的n个列向量——即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量. 由于B的秩为挖,故(Ⅱ)的解空间的维数为2n-n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系.已知(Ⅰ)的基础解系含n个向量,故2n-r(A)=n,得r(A)=n,于是A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为 y=c
1
(α
11
,α
12
,…,α
1,2n
)
T
+c
2
(α
21
,α
22
,…,α
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
,(c
1
,c
2
,…,c
n
为任意常数)
解析
转载请注明原文地址:https://kaotiyun.com/show/8jH4777K
0
考研数学三
相关试题推荐
设,其中f(x)为连续函数,则等于().
级数的收敛域为_________.
将函数展开成x-1的幂级数,并指出其收敛区间.
设二阶常系数微分方程y’’+ay’+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定a、β、γ和此方程的通解.
设随机变量X1与X2相互独立且都服从(0,θ)上的均匀分布,求边长为X1和X2的矩形周长的概率密度.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中求:(A一3E)6.
已知f(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=e/n,求函数项级数fn(x)之和.
设f(x)是周期为2的连续函数.证明任意的实数t,有
求极限
某人打电话忘记对方号码最后一位,因而对最后一位数随机拨号,设拨完某地区规定的位数才完成一次拨号,且假设对方不占线,求到第k次才拨通对方电话的概率.
随机试题
把城市分为大城市、中等城市和小城市的依据为()
女患,46岁,以“双手、颜面皮肤肿胀、变硬8个月”来诊。查体:手指及面部皮肤增厚,嘴唇变薄,张口受限。手指、手背肿胀,指尖发凉,关节活动受限。化验:血清RF轻度增高,ANA阳性,血、尿常规正常。患者近日出现干咳,轻微活动后气短,胸片检查未见异常。宜做
关于工作流程与工作流程图的说法,正确的是()。
炉火臧克家金风换成了北风,秋去冬来了。冬天刚刚冒了个头,落了一场初雪,我满庭斗艳争娇的芳菲,顿然失色,鲜红的老来娇,还有各色的傲霜菊花,一夜全白了头。两棵丁香,叶子簌簌辞柯
下列属于犯罪未遂的是()。
反市场细分策略就是在满足大多数消费者的共同需求基础上,将过分狭小的市场合并起来,以便能以规模营销优势达到用较低的价格去满足较大市场的消费需求。根据上述定义,下列选项属于反市场细分策略的是()。
根据统计资料,2006年1~8月份黑龙江对俄出口总值是( )。根据统计资料,2007年1~8月份全国对俄贸易进出口总值是( )。
填入下面句子的横线处,上下文衔接最恰当的一项是:浑身雅艳,遍体娇香,_______。①一对眼明秋水润。②脸如莲萼,③两弯眉画远山青,④分明卓氏文君,⑤何减白家樊素,⑥唇似樱桃。
项目论证是确定项目是否实施的依据,_______不属于项目建设方项目论证的原则。_______不属于项目建设方项目论证的内容。(34)
在下列有关Windows98网络功能的叙述中,错误的是( )。
最新回复
(
0
)