首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的一个基础解系为: (b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T. 试写出线性方程组的通解,并说明理由.
已知线性方程组的一个基础解系为: (b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T. 试写出线性方程组的通解,并说明理由.
admin
2017-06-26
59
问题
已知线性方程组
的一个基础解系为:
(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.
试写出线性方程组
的通解,并说明理由.
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的n个向量就是B的n个行向量的转置向量,因此,由(Ⅰ)的已知基础解系可知 AB
T
=O 转置即得BA
T
=O 因此可知A
T
的n个列向量——即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量. 由于B的秩为挖,故(Ⅱ)的解空间的维数为2n-n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系.已知(Ⅰ)的基础解系含n个向量,故2n-r(A)=n,得r(A)=n,于是A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为 y=c
1
(α
11
,α
12
,…,α
1,2n
)
T
+c
2
(α
21
,α
22
,…,α
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
,(c
1
,c
2
,…,c
n
为任意常数)
解析
转载请注明原文地址:https://kaotiyun.com/show/8jH4777K
0
考研数学三
相关试题推荐
设三阶矩阵A=,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a_________.
设某产品的需求函数为Q=Q(P),收益函数为R=PQ,其中P为产品价格,Q为需求量(产品的产量),Q(P)是单调减函数,如果当价格为P0,对应产量为Q0时,边际收益,收益对价格的边际效应,需求对价格的弹性为EP=b>1,求P0和Q0.
设周期函数f(x)在(-∞,+∞)内可导,周期为4.又,则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过a表示为b2=__________.
设n阶矩阵A=(Ⅰ)求A的特征值和特征向量;(Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵.
若一条二次曲线把(一∞,0)内的曲线段y=en和(1,+∞)内的曲线段连结成一条一阶可导的曲线,则定义在[0,1]上的这条二次曲线为_____________.
设随机变量X的密度函数为f(x),方差DX=4,而随机变量Y的密度函数为2f(一2y),X且Y的相关系数求EZ,DZ;
设f(x)在[一δ,δ]有定义,且f(0)=f’(0)=0,f’’(0)=a>0,又收敛,则P的取值范围是
行列式
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
随机试题
撰写公文时应当尽量使用()
国际咨询工程师联合会(FIDIC)成立于()。
股票的内在价值是每股股票所代表的实际资产价值。()
委托加工的物资收回后用于连续生产的,应将受托方代收代缴的消费税计入委托加工物资的成本。()
某有限责任公司注册资本为人民币8000万元,净资产为人民币1亿元,该公司变更为股份有限公司时,根据公司法律制度的规定,折合的实收股本总额不得高于()。(1999年)
一般情况下,在证券主板市场上某只股票的市盈率越低,表明其投资价值越低;反之,则结论相反。
在一个大学生宿舍有3个同学,她们的名字是:小梅、小红和小利。一个学英语,一个学法语,一个学德语:一个来自北京,一个来自上海,一个来自重庆。来自北京的不是学英语的。小红不学法语。小利来自上海。来自重庆的学法语。由此可知()。
非学历民办学校:指国家机构以外的社会组织和个人利用非国家财政性经费,面向社会举办不具备颁发学历文凭资格的培训、进修、专修学院(学校、中心)。根据上述定义,下列不属于非学历民办学校的一项是( )。
Aparadoxofeducationisthatpresentinginformationinawaythatlookseasytolearnoftenhastheoppositeeffect.Numerous
A)Toawriter,self-publishingisanincrediblypowerfulandalluringconcept.Onthesimplestlevel,it’sanintriguingsoluti
最新回复
(
0
)