首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4).是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为( )
设A=(α1,α2,α3,α4).是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为( )
admin
2017-10-21
52
问题
设A=(α
1
,α
2
,α
3
,α
4
).是4阶矩阵,A
*
为A的伴随矩阵,若(1,0,1,0)
T
是方程组AX=0的一个基础解系,则A
*
X=0的基础解系可为( )
选项
A、α
1
,α
3
.
B、α
1
,α
2
.
C、α
1
,α
2
,α
3
.
D、α
2
,α
3
,α
4
.
答案
D
解析
AX=0的一个基础解系由一个向量构成,说明4一r(A)=1,r(A)=3,从而r(A
*
)=1.则A
*
X=0的基础解系应该包含3个解.排除(A)和(B).
由于(1,0,1,0)
T
是AX=0的解,有α
1
+α
3
=0,从而α
1
,α
2
,α
3
线性相关,排除(C).
转载请注明原文地址:https://kaotiyun.com/show/97H4777K
0
考研数学三
相关试题推荐
判断级数的敛散性,若收敛是绝对收敛还是条件收敛?
判别级数的敛散性,若收敛求其和.
设级数().
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
An×n=(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
证明.当x>0时,
将f(x)=arctanx展开成x的幂级数.
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解址()
随机试题
设函数f在[a,b]上有定义,且对任给的ε>0,存在[a,b]上的可积函数g,使得|f(x)-g(x)|<ε,x∈[a,b].证明f在[a,b]上可积.
维持身体平衡的不包括
按照“建筑工程一切险”保险合同的规定,保险公司对被保险人的损失不承担赔偿责任的情况包括()。
下列关于单元工程施工质量评定的说法正确的是()。
某食品加工企业(非房地产开发企业)整体出售了其新建的商品房,与商品房相关的取得土地使用权所支付的金额为6000万元,开发成本共计4000万元;该企业不能按转让房地产项目计算分摊银行借款利息;该项目所在省政府规定计征土地增值税时,房地产开发费用扣除比例按10
金融市场的客体是指()。
消费税的纳税环节是()。
下列选项中,属于盈余公积项目核算的有()。
被苏轼赞为“诗中有画,画中有诗”的唐代诗人是()。
无符号二进制整数111111转换成十进制数是()。
最新回复
(
0
)