首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的密度函数为 (1)问X,Y是否独立? (2)分别求U=X2和V=Y2的密度函数fU(u)和fV(v),并指出(U,V)服从的分布; (3)求P(U2+V2≤1).
设二维随机变量(X,Y)的密度函数为 (1)问X,Y是否独立? (2)分别求U=X2和V=Y2的密度函数fU(u)和fV(v),并指出(U,V)服从的分布; (3)求P(U2+V2≤1).
admin
2016-12-16
54
问题
设二维随机变量(X,Y)的密度函数为
(1)问X,Y是否独立?
(2)分别求U=X
2
和V=Y
2
的密度函数f
U
(u)和f
V
(v),并指出(U,V)服从的分布;
(3)求P(U
2
+V
2
≤1).
选项
答案
(1)f
X
(x)=∫
一∞
+∞
f (x,y)dy=[*] f
Y
(Y)=∫
一∞
+∞
f (x,y)dx=[*] 由于f(x,y)=f
X
(x).f
Y
(y),(x,y)∈R
2
, 故X,Y相互独立. (2)F
U
(u)=P(U≤u)=P(X
2
≤u)=[*]f
X
(x)dx [*] 由于X,Y相互独立,所以U=X
2
和V=Y
2
也相互独立,从而(U,V)的密度函数为 f
UV
(uυ)=f
U
(u) f
V
(υ)=[*] 由此表明,(U,V)服从区域D
UV
={(u,υ)|0≤u≤1,0≤υ≤1}上的均匀分布. (3)由(2)可知(记D={(u,υ)|u
2
+υ
2
≤1,u≥0,υ≥0}) P(U
2
V
2
≤1)=[*]
解析
因f(x,y)的非零值部分可分解为两个仅与x、仅与y有关的函数率积g
1
(x)g
2
(y),且f(x,y)取非零值的区域也可分解出两个仅与x,与y有关的区间,据此,从直观上可看出X,Y独立,因而其函数X
2
和Y
2
也独立,求出边缘密度f
X
(x),f
Y
(y),再求出U与V的分布,利用独立性即可求得(U,V)的分布.
转载请注明原文地址:https://kaotiyun.com/show/9BH4777K
0
考研数学三
相关试题推荐
求函数z=5x2+y2当x=1,y=2,△x=0.05,△y=0.1时的全增量和全微分.
利用函数的奇偶性计算下列定积分:
求半径为R,中心角为2π/3的均匀物质圆弧对位于圆心处的单位质点的引力.
计算,其中L是:(1)抛物线y2=x上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;(3)从点(1,1)到点(1,2)再到点(4,2)的折线;(4)曲线x=2t2+t+1,y=t2+1上从点(1,1)到点(4,2
求f(x)的值域.
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.若收到字符为ABCA,问被传送字符为AAAA的概率是多大?
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
求函数y=(x-1)eπ/2+arctanx的单调区间和极值,并求该函数图形的渐近线.
随机试题
可资鉴别恶性组织细胞病与实体瘤的是
门静脉高压症发生后的侧支循环有哪些?
在单一法人客户的财务状况分析中,财务比率内容主要包括()。
某会计师事务所拥有170万元的流动资产及90万元的流动负债,下列交易可以使该事务所流动比率下降的有()。
根据《劳动法》的规定;( )不属于劳动者权利。
设圆C与两圆(x+)2+y2=4,(x一)2+y2=4中的一个内切,另一个外切.已知点且P为L上动点,求|MP|—|FP|的最大值及此时点P的坐标.
试比较伊拉斯谟与拉伯雷、蒙旦的教育思想。
嘉禾医院安排3个男护士T、M、B和3个女护士H、S和J从周一到周六每个人工作1天。这6天中每天都有人工作。有6个人中的任何2个都不在同一天工作。(1)在M工作的那一天与J工作的那一天之间恰好有2个完整的工作日,且在一个工作周内,M总是在J之前工
ChinatoHelpEuropeDevelopGPSRivalChinaistocontributetoanewglobalsatellitenavigationsystembeingdevelopedby
Mirrorimagesisoftendifferentfromthe"feltimage".
最新回复
(
0
)