首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的密度函数为 (1)问X,Y是否独立? (2)分别求U=X2和V=Y2的密度函数fU(u)和fV(v),并指出(U,V)服从的分布; (3)求P(U2+V2≤1).
设二维随机变量(X,Y)的密度函数为 (1)问X,Y是否独立? (2)分别求U=X2和V=Y2的密度函数fU(u)和fV(v),并指出(U,V)服从的分布; (3)求P(U2+V2≤1).
admin
2016-12-16
50
问题
设二维随机变量(X,Y)的密度函数为
(1)问X,Y是否独立?
(2)分别求U=X
2
和V=Y
2
的密度函数f
U
(u)和f
V
(v),并指出(U,V)服从的分布;
(3)求P(U
2
+V
2
≤1).
选项
答案
(1)f
X
(x)=∫
一∞
+∞
f (x,y)dy=[*] f
Y
(Y)=∫
一∞
+∞
f (x,y)dx=[*] 由于f(x,y)=f
X
(x).f
Y
(y),(x,y)∈R
2
, 故X,Y相互独立. (2)F
U
(u)=P(U≤u)=P(X
2
≤u)=[*]f
X
(x)dx [*] 由于X,Y相互独立,所以U=X
2
和V=Y
2
也相互独立,从而(U,V)的密度函数为 f
UV
(uυ)=f
U
(u) f
V
(υ)=[*] 由此表明,(U,V)服从区域D
UV
={(u,υ)|0≤u≤1,0≤υ≤1}上的均匀分布. (3)由(2)可知(记D={(u,υ)|u
2
+υ
2
≤1,u≥0,υ≥0}) P(U
2
V
2
≤1)=[*]
解析
因f(x,y)的非零值部分可分解为两个仅与x、仅与y有关的函数率积g
1
(x)g
2
(y),且f(x,y)取非零值的区域也可分解出两个仅与x,与y有关的区间,据此,从直观上可看出X,Y独立,因而其函数X
2
和Y
2
也独立,求出边缘密度f
X
(x),f
Y
(y),再求出U与V的分布,利用独立性即可求得(U,V)的分布.
转载请注明原文地址:https://kaotiyun.com/show/9BH4777K
0
考研数学三
相关试题推荐
求下列函数的全微分:
求曲线y=sinx在具有下列横坐标的各点处切线的斜率:x=2/3π;x=π.
设某商品需求量Q是价格p的单调减少函数:Q=p(p),其需求弹性η=2p2/(192-p2)>0.设R为总收益函数,证明dRD/DP=Q(1-η)
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.求收到字符ABCA的概率;
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(-1,-3,-4,-7),α4=(2,1,2,3);
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设函数y=f(x)由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程是__________.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
随机试题
男,62岁,进食梗噎、烧灼感2月。食管钡餐造影检查提示:食管下段黏膜紊乱、断裂,管壁僵硬。该患者治疗时首选
女性,24岁,婚后3天,尿频、尿急、尿痛3天。查体:T36.4℃,双肾区无叩痛,下腹部轻压痛,尿常规:许多红、白细胞。最可能的诊断为
急性阑尾炎最常见病因是阑尾管腔阻塞,而阻塞阑尾管腔的最常见病因是
钩藤来源于()
患者,女,45岁,因蛛网膜下腔出血住院。患者出现定向力障碍,思维和语言不连贯,有错觉、幻觉、躁动不安。该患者的意识状态为
下列属于我国《中央企业全面风险管理指引》设定的风险管理总体目标的有()。
均田制
Happinesscanbedescribedasapositivemoodandapleasantstateofmind.Accordingtorecentinvestigations,sixtytoseventy
A、Hespilledhisdrinkontothefloor.B、Hehasjustfinishedwipingthefloor.C、Hewascaughtinashoweronhiswayhome.D、H
A、Customersdon’tlikethetraditionalhamburgersanymore.B、Theywanttoattractmorechildren.C、Theywanttomaketheirfood
最新回复
(
0
)