首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
admin
2017-03-15
78
问题
已知A是三阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
选项
答案
设λ是矩阵A的任一特征值,α(α≠0)是属于特征值λ的特征向量,则Aα=λα,于是 A
n
α=λ
n
α。用α右乘A
4
+2A
2
+A
2
+2A=O,得(λ
4
+2λ
3
+λ
2
+2λ)α=0。 因为特征向量α≠0,故λ
4
+2λ
3
+λ
2
+2λ=λ(λ+2)(λ
2
+1)=0。由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或-2。 由于实对称矩阵必可相似对角化,且秩r(A)=r(Λ)=2,所以A的特征值是0,-2,-2。 因A~Λ,则有A+E~A+E=[*],所以r(A+E)=r(A+E)=3。
解析
转载请注明原文地址:https://kaotiyun.com/show/9Nu4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 C
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
已知y=x2+a与y=b㏑(1+2x)在x=1点相切(两曲线在(x。,y。)处相切是指它们在(x。,y。)处有共同切线),求a,b的值.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
幂级数x2n-1的收敛半径R=___________.
求极限
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
随机试题
A.经济标准B.疗效标准C.社会标准D.行为标准E.科学标准评价医疗行为是否有利于人类生存和改善,是否有利于人类健康符合()
世界卫生组织提出的健康教育的定义是
下列哪项不是外科急腹症发生穿孔性病变时的主要特征
下列情况中,不能提起行政复议的是()。
大额可转让定期存单的特点是不记名;金额较大;利率有固定的,也有浮动的,一般比同期限的定期存款的利率高;不能提前提取,也不能在二级市场上流通转让。()
关于外部激励的描述,下列说法正确的是()
最近一期的《瞭望新闻周刊》有文章称“消费就是爱国”,有关专家撰文加以嘲笑:我从来没有想到________的生活方式,居然会成为一种道德瑕疵。填入划横线部分最恰当的一项是()。
Text…Dadwas【C1】______80.Buthealwayslaughed【C2】______myconcerns.Nowthecancercameback.Hehadamonth,two【C3】_
A、Changeanewjob.B、Buyacar.C、Movetoanewapartment.D、Findagoodlandlady.C女士说她不能像男士一样换工作,于是男士提到他的房东还有一间空房,女士说那太好了,也许她
Whatisyourfavoritecolor?Doyoulikeyellow,orange,andred?Ifyoudo,youmustbeanoptimist,anactivepersonwhoenjoy
最新回复
(
0
)