首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵B=,并且AB=0,求齐次线性方程组AX=0的通解.
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵B=,并且AB=0,求齐次线性方程组AX=0的通解.
admin
2018-08-12
70
问题
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵B=
,并且AB=0,求齐次线性方程组AX=0的通解.
选项
答案
由于AB=0,r(A)+r(B)≤3,并且B的3个列向量都是AX=0的解. (1)若k≠9,则r(B)=2,r(A)=1,AX=0的基础解系应该包含两个解.(1,2,3)
T
和(3,6,k)
T
都是解,并且它们线性无关,从而构成基础解系,通解为: c
1
(1,2,3)
T
+c
2
(3,6,k)
T
,其中c
1
,c
2
任意. (2)如果k=9,则r(B)=1,r(A)=1或2. ①r(A)=2,则AX=0的基础解系应该包含一个解,(1,2,3)
T
构成基础解系.通解为: c(1,2,3)
T
,其中c任意. ②r(A)=1,则AX=0的基础解系包含两个解,而此时B的3个列向量两两相关,不能用其中的两个构成基础解系. 由r(A)=1,A的行向量组的秩为1,第一个行阳量(a,b,c)(≠0!)构成最大无关组,因此第二,三个行向量都是(a,b,c)的倍数,从而AX=0和方程aχ
1
+bχ
2
+cχ
3
=0同解.由于(1,2.3)
T
是解,有a+2b+3c=0,则a,b不都为0(否则(a,b,c都为0),于是(b,-a,0)
T
也是aχ
1
+bχ
2
+cχ
3
=0的一个非零解,它和(1,2,3)
T
线性无关,一起构成基础解系,通解为:c
1
(1,2,3)
T
+c
2
(b,-a,0)
T
,其中c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/9Qj4777K
0
考研数学二
相关试题推荐
设A=有三个线性无关的特征向量,则a=_______.
设二次型f=2x12+x22+ax32+2x1x2+2bx13+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
设A=,B为三阶矩阵,r(B*)=1且AB=O,则t=_______.
设f(x)=讨论函数f(x)在x=0处的可导性.
设x3-3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
求微分方程x2y"-2xy’+2y=2x-1的通解.
求极限:
设a1=0,当n≥1时,an+1=2一cosan,证明:数列{an}收敛,并证明其极限值位于区间(,3)内.
随机试题
组织文化的功能是什么?
大陆法系形成的基础是()
胃经的络穴是
下列哪些情况可以称之为肥大
在统计数据的整理中,对数值型数据主要是作分组整理。()
下列不会导致承诺不生效的是( )。
目前国内外对国际工程投标报价的组成有着不同的划分,主要的两种方法取决于某项费用是否单列,这项费用是()。
用友报表系统中,要生成有数据的报表,最重要的一个步骤是( )。
Thereareasmanydefinitionsofphilosophyastherearephilosophers—perhapsthereareevenmore.Afterthreemillenniaofphil
Thereisa______amongteachersthatchildrenshouldhaveabroadunderstandingoftheworld.
最新回复
(
0
)