首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设A为n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
admin
2015-06-30
86
问题
设A为n阶矩阵,若A
k-1
α≠0,而A
k
α=0.证明:向量组α,Aα,…,A
k-1
α线性无关.
选项
答案
令l
0
α+l
1
Aα+…+l
k-1
A
k-1
α=0(*) (*)式两边同时左乘A
k-1
得l
0
A
k-1
α=0,因为A
k-1
a≠0,所以l
0
=0;(*)式两边同时左乘A
k-2
得l
1
A
k-1
α=0,因为A
k-1
α≠0,所以l
1
=0,依次类推可得l
2
=…=l
k-1
=0,所以α,Aα,…,A
k-1
α线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/or34777K
0
考研数学二
相关试题推荐
设函数f(x)满足xf’(x)-3f(x)=-6x2,且由曲线y=f(x)与直线x=1及x轴所围成的平面图形D绕x轴旋转一周所得旋转体的体积最小,试求D的面积。
f(x)与g(x)的图像如图所示,设u(x)=f[g(x)],则u’(1)=________.
平面上三点M1(x1,y1),M2(x2,y2),M3(x3,y3)在直线ax+by+c=0上的一个充分必要条件是________.
设总体X的概率分布如下从总体中抽取n个简单的样本,N1表示n个样本中取到-1的个数,N2表示n个样本中取到0的个数,N3表示n个样本中取到1的个数,则N1与N2的相关系数为()。
设F(u,v)可微,y=y(x)由方程F[xex+y,f(xy)]=x2+y2所确定,其中f(x)是连续函数且满足关系式∫1xyf(t)dt=x∫1yf(t)dt+y∫1xf(t)dt,x,y>0,又f(1)=1,求:
根据下列条件,进行回答。任取x0>0,令xn=2ln(1+xn-1)(n=1,2,…),证明存在,并求其值。
在区间[0,1]上函数f(x)=nx(1-x)n(n为正整数)的最大值记为M(n),则M(n)=________.
设A是三阶矩阵,α1,α2,α3为3个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设当x→0时,x-(a+bcosx)sinx与x3是等价无穷小,则()
f(x)=求f(x)的间断点并对其进行分类.
随机试题
举出两个发生过债务危机的发展中国家名称,并分析其债务危机的起源。
需要运用资产评估报告书的政府管理部门有()
关于T2DM与T1DM的不同点,错误的说法是
心理发展的性质不包括()。
人类思维的基本过程是()。
①对发展中国家和新兴市场国家尤其如此②很大原因是因为中国仍然保持着对资本流动的严格控制③作为一个发展中国家,中国之所以在过去这些年屡屡可以躲过金融危机的直接冲击④资本的自由流动,从来都是一把双刃剑⑤一个原因就是这些国
IfwelookattheChineseandBritishconceptsofhospitality,wefindonemajorsimilaritybutanumberofimportantdifference
OfficeSpaceAroundtheturnofthecentury,youcouldn’tgetofficespaceinSanFranciscowithoutfirstshowingyourpoten
Themostcontroversialtopicsin【B1】______sportsmaybedruguse,butinyouthsports,notwowordsaremoreinflammatory(煽动性的)
A、Totalkwithsomeoneorwithoneself.B、Tohavealongandgoodrelaxation.C、Todomoreaerobicexercises.D、Totakemoreant
最新回复
(
0
)