设f(x)在[0,+∞)上连续,满足0≤f(x)≤x,x∈[0,+∞),设a1≥0,an+1=f(an)(n=1,2,…),证明: 设an=t,则有f(t)=t.

admin2021-06-16  56

问题 设f(x)在[0,+∞)上连续,满足0≤f(x)≤x,x∈[0,+∞),设a1≥0,an+1=f(an)(n=1,2,…),证明:
an=t,则有f(t)=t.

选项

答案因[*]an=t,f(x)在[0,+∞)上连续,且t∈[0,+∞),故有 t=[*]an+1=[*]f(an)=f([*]an)=f(t)

解析
转载请注明原文地址:https://kaotiyun.com/show/A6y4777K
0

最新回复(0)