首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
admin
2018-04-18
59
问题
设A是n阶矩阵,k为正整数,α是齐次方程组A
k
X=0的一个解,但是A
k-1
α≠0.证明α,Aα,…,A
k-1
α线性无关.
选项
答案
用定义证明. 方法一 设c
1
α+c
2
Aα+…+c
k
A
k-1
α=0,要推出每个c
i
=0. 先用A
k-1
乘上式两边,注意到当m≥k时,A
m
α=0(因为A
k
X=0),得到c
1
A
k-1
α=0.又因为A
k-1
α≠0,所以c
1
=0.上式变为c
2
Aα+…+c
k
A
k-1
α=0.再用A
k-2
乘之,可得到c
2
=0.如此进行下去,可证明每个c
i
=0. 方法二 用反证法.如果α,Aα,…,A
k-1
α线性相关,则存在不全为0的c
1
,c
2
,…,c
k
,使得c
1
α+c
2
Aα+…+c
k
A
k-1
α=0,设其中第一个不为0的系数是c
i
,则c
i
A
i-1
α+…+c
k
A
k-1
α=0,用A
k-i
乘之,得c
i
A
k-1
α=0.从而A
k-1
α=0,与条件矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/AVk4777K
0
考研数学二
相关试题推荐
[*]
A、 B、 C、 D、 D
设(X,Y)是二维离散型随机向量,其分布为P(X=xi,Y=yj}=pij(i=1,2,…,m;j=1,2,…,n),称(pij)m×n为联合概率矩阵.证明:X与Y相互独立的充要条件是(pij)m×n的秩为1.
设有三元方程xy-zlny+exy=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程
设f(x)在[0,1]上连续且递减,证明:当0<λ<1时,
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ(a,b),使得f"(f)=g"(ξ).
已知函数f(u)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y-xey-1=1所确定.设z=f(lny-sinx),
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
(2001年试题,四)求极限记此极限为f(x),求函数f(x)的间断点并指出其类型.
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a.试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
随机试题
半固体培养基中琼脂浓度为
抽样研究中,适当增加观察单位数,可以
A、30kNB、27.7kNC、40kND、0B用平衡方程解,再用摩擦定律
附认股权证的公司债券的购买者可以按预先规定的条件在公司发行股票时享有优先购买权。“预先规定的条件”主要是指()。①股票的购买价格②认购比例③认购期间④认购金额
根据《中华人民共和国担保法》的规定,在质押合同中,以()出质的,质押合同自权利凭证交付之日起生效。
关于所有者权益变动表的编制,下列说法不正确的是()。
赵老师是幼儿园大班的老师,一次会议上,她就幼儿园管理问题提出了自己的建议,园长却说她没有这个权利。以下说法正确的是()。
计划策略包括()
Tina:Mmm...ThisisthebestpuddingI’veeverhad!Lyle:______Iknowyou’dlikeit.
某图书集团数据库中有关系模式R(书店编号,书籍编号,库存数量,部门编号,部门负责人),其中要求:①每个书店的每种书籍只在该书店的一个部门销售;②每个书店的每个部门只有一个负责人;③每个书店的每种书籍只有一个库存数量。则关系模式R最高是(
最新回复
(
0
)