首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=__________.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=__________.
admin
2019-05-08
59
问题
设随机变量X服从正态分布N(μ,σ
2
)(σ>0),且二次方程y
2
+4y+X=0无实根的概率为1/2,则μ=__________.
选项
答案
4
解析
解一 设事件A表示二次方程y
2
+4y+X=0无实根,则
△=4
2
-4X=16-4X<0, 即 A={16-4X<0}={X>4}.
由题设有P(A)=P(X>4)=1/2.而X服从正态分布N(μ,σ
2
),具有性质P(X≥μ)=P(X≤μ)=1/2,故μ=4.
解二 因
故
即μ=4.
转载请注明原文地址:https://kaotiyun.com/show/AoJ4777K
0
考研数学三
相关试题推荐
设un收敛,则下列级数必收敛的是().
设随机变量X的密度函数f(x)=且P{1<X<2}=P{2<X<3},则常数A=________;B=________;概率P{2<X<4}=________;分布函数F(x)=________。
设随机变量X1的分布函数为F1(x),概率密度函数为f1(x),且E(X1)=1,随机变量X的分布函数为F(x)=0.4F1(x)+0.6F1(2x+1),则E(X)=________。
已知随机变量(X,Y)在区域D={(x,y)|一1<x<1,一1<y<1}上服从均匀分布,则()
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导件.
二阶常系数非齐次线性微分方程y’’-2y’-3y=(2x+1)e-x的特解形式为().
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
求由方程x2+y3-xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
随机试题
解释下列括号内的词语:而吾未尝以此(自多)者,自以比形于天地,而受气于阴阳。
A、Theyneedcareandaffection.B、Theyarefondofround-the-worldtrips.C、Theyaremostlyformbrokenfamilies.D、Theyarelik
附着于喙突的肌肉是
甲状腺一侧切除术后发生窒息最可能的原因是
某安装公司分包一商务楼(一至五层为商场,六至三十层为办公楼)的变配电工程,工程的主要设备(三相干式电力变压器、手车式开关柜和抽屉式配电柜)由业主采购,设备已运抵施工现场,其他设备、材料由安装公司采购。合同工期60天,并约定提前1天,奖励5万元人民币,延迟1
对某种商品或者服务具有监督职责的组织所控制,而由该组织以外的单位或者个人使用于其商品或者服务,用以证明该商品或者服务的原产地、原料、制造方法、质量或者其他特定品质的商标是()。
在我国大连商品交易所交易的期货合约有( )。
试对金融监管的三道防线分别加以分析。
垄断利润的形成,关键在于
利率期货套利交易包括()两大类。
最新回复
(
0
)