首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
admin
2017-09-15
36
问题
设f(χ)二阶可导,
=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
选项
答案
由[*]=1,得f(0)=0,f′(0)=1, 又由f〞(χ)>0且χ≠0,所以f(χ)>f(0)+f′(0)χ=χ.
解析
转载请注明原文地址:https://kaotiyun.com/show/Apt4777K
0
考研数学二
相关试题推荐
设区域D是由直线y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-8).(X,Y)服从区域D上的均匀分布.求条件密度函数fY|X(y|x)和fX|Y(x|y).
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
下列给出的各对函数是不是相同的函数?
设f(x)为单调函数且二阶可导,其反函数为g(x),又f(1)=2,,f〞(1)=1.求gˊ(2),g〞(2).
利用二阶导数,判断下列函数的极值:(1)y=x3-3x2-9x-5(2)y=(x-3)2(x-2)(3)y=2x-ln(4x)2(4)y=2ex+e-x
证明曲线有位于同一直线上的三个拐点.
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
若f(x)是连续函数,证明
随机试题
证券交易内幕信息的知情人包括()。Ⅰ.发行人的高级管理人员Ⅱ.持有公司5%以上股份的股东Ⅲ.由于所任公司职务可以获取公司有关内幕信息的人员Ⅳ.证券监督管理机构工作人员
论述国际服务营销和国际服务贸易的联系和区别。
治疗男性早泄的是能够确实缩小前列腺体积的是
属于多方位图像重组的后处理方法是
斜疝修补术后,最适宜的卧位是
甲公司在中国签发一张以荷兰乙公司为受益人、以荷兰丙银行为付款人的汇票乙公司在荷兰将该汇票背书转让给德国丁公司,丁公司向丙银行提示承兑时被拒绝依照我国《票据法》,关于此案的法律适用,下列表述正确的是()
现代组织理论认为,组织设计应遵循下列原则()。
卢沟桥事变(河北师范大学2010年历史学复试真题)
Theauthor’sattitudetowardsthecurrentsituationintheexploitationofnaturalresourcesis______Accordingtotheauthor,
下列设备组中,完全属于计算机输出没备的一组是()。
最新回复
(
0
)