首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).
admin
2019-05-17
20
问题
设n维列向量组α
1
,α
2
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件是( ).
选项
A、向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
m
线性表示
B、向量组β
1
,β
2
,…,β
m
可由向量组α
1
,α
2
,…,α
m
线性表示
C、向量组α
1
,α
2
,…,α
m
与向量组β
1
,β
2
,…,β
m
等价
D、矩阵A=(α
1
,α
2
,…,α
m
)与矩阵B=(β
1
,β
2
,…,β
m
)等价
答案
D
解析
因为α
1
,α
2
,…,α
m
线性无关,所以向量组α
1
,α
2
,…,α
m
的秩为m,向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件是其秩为m,所以选D.
转载请注明原文地址:https://kaotiyun.com/show/BrV4777K
0
考研数学二
相关试题推荐
∫0nπχ|cosχ|dχ.
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
下列命题正确的是().
求微分方程χy=χ2+y2满足初始条件y(e)=2e的特解.
设当χ→0时,eχ=(aχ2+bχ+1)是χ2的高阶无穷小,则().
微分方程掣=y(χy-χ+y-1)的通解为________.
曲线上对应于t=1点处的法线方程为___________。
曲线的渐近线的条数为().
设当x→x0时,α(x),β(x)都是无穷小(β(x)≠0),则当x→x0时,下列表达式中不一定为无穷小的是()
求极限
随机试题
编写函数fun,它的功能是:利用以下所示的简单迭代方法求方程:cos(x)—x=0的一个实根。Xn=1=cos(Xn)迭代步骤如下:(1)取x1初值为0.0;(2)x0=x1,把x1的值赋给x0;(3)
对检定不合格的压力表,发给《检定不合格证书》。
Mostexpertssaythatthenewtaxplanwillhaveanegligibleeffectonthecountry’seconomicproblems.
患者女性,31岁,G3P1,停经56天行负压吸宫术,术后阴道持续出血两周复诊,出血量时多时少。妇科检查:子宫如孕6周大小、质地较软,血HCG625mmol/L,妇科B型超声提示宫腔内有混合性回声光团并伴有血流信号,首先考虑的诊断是
患者,女性,22岁。因咳嗽、痰中带血3日,以“支气管扩张”收住院。今晨突然大咳血100ml。该患者最主要的护理诊断或合作性问题是
控制图就是利用()规律来识别生产过程中的异常原因,控制系统性原因造成的质量波动,保证生产过程处于控制状态。
计算内墙墙身高度时,无屋架者算至天棚底需要另加()。
在破产程序中,债权人会议未能依法通过管理人的财产分配方案时,由人民法院裁定。根据企业破产法律制度的规定,有权对该裁定提出复议的债权人是()。(2008年)
下列选项中,可用成语略写法快速书写的词组是()。
颜回说:“夫子循循然善诱人,博我以文,约我以礼,欲罢不能。”这说明德育工作要遵循()。
最新回复
(
0
)