首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)一f(x2)|<.
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)一f(x2)|<.
admin
2017-10-23
61
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于
x
1
,x
2
∈[0,1],有
|f(x
1
)一f(x
2
)|<
.
选项
答案
联系f(x
1
)—f(x
2
)与f’(x)的是拉格朗日中值定理.不妨设0≤x
1
≤x
2
≤1.分两种情形: 1)若x
2
一x
1
<[*],直接用拉格朗日中值定理得 |f(x
1
)一f(x
2
)|=|f’(ξ)(x
2
一x
1
)|=|f’(ξ)||x
2
一x
1
|<[*]. 2)若x
2
一x
1
≥[*],当0<x
1
<x
2
<1时,利用条件f(0)=f(1)分别在[0,x
1
]与[x
2
,1]上用拉格朗日中值定理知存在ξ∈(0,x
1
),η∈(x
2
,1)使得 |f(x
1
)一f(x
2
)|=|[f(x
1
)一f(0)]一[f(x
2
)一f(1)]| ≤|f(x
1
)一f(0)|+|f(1)一f(x
2
)| =|f’(ξ)x
1
|+|f’(η)(1一x
2
)| <x
1
+(1一x
2
)=1一(x
2
一x
1
)≤[*], ①当x
1
=0且x
2
≥[*]时,有 |f(x
1
)一f(x
2
)|=|f(0)一f(x
2
)|=|f(1)一f(x
2
)|=|f’(η)(1一x
2
)|<[*]. ②当x
1
≤[*]且x
2
=1时,同样有 |x(x
1
)一f(x
2
)|=|f(x
1
)一f(1)|=|f(x
1
)一f(0)|=|f’(ξ)(x
1
一0)|<[*]. 因此对于任何x
1
,x
2
∈[0,1]总有 |f(x
1
)一f(x
2
)|<[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/BsX4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)|+|f’(b)|≤2(b一a).
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.
设f(x)=,且f’(0)存在,则a=__________,b=__________,c=__________
设f(x)可导,则当△x→0时,△y—dy是△x的().
计算,其中D={(x,y)|x2+y2≤4x,0≤y≤x}.
计算=,其中D={(x,y)|x2+y2≤1,x≥0,y≥0}.
求,其中D:x2+y2≤π2.
设f(x)为连续函数,证明:
随机试题
(2008年第47题)Libman-Sacks血栓性心内膜炎常发生于
常规预防白喉的方法是对易感人群接种
统计学指标中标准误表示A.抽样误差B.变异程度C.离散程度D.分布状况E.可信区间
施工成本偏差分析的表达方式包括()。
会计期末,将“主营业务收入”账户贷方余额100000元和“主营业务成本”账户借方余额60000元结转损益,正确的分录是()。
酸味烹调的主要作用是()
下列程序的运行结果是______。#include<iostream.h>classA{public:virtualvoiduse(){cout<<"inA\n";}};class
TheKalinagotribe,ontheislandofDominica,isundersomehistoricpopulationpressure.The【C1】______majorityoftheWestI
Fillinthemissingnumbersinthissequence:15873×7=11111115873×14=22222215873×()=33333315()×28=(
A、Collectashtreeseedsforexperiment.B、Preservethehealthyashtreeseeds.C、Setupanewseedbankforresearch.D、Develop
最新回复
(
0
)