首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明: η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n-r+1个线性无关解;
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明: η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n-r+1个线性无关解;
admin
2016-04-29
136
问题
已知η是非齐次线性方程组Ax=b的一个特解,ξ
1
,ξ
2
,…,ξ
n-r
,是对应齐次方程组Ax=0的基础解系,证明:
η,η+ξ
1
,η+ξ
2
,…,η+ξ
n-r
是Ax=b的n-r+1个线性无关解;
选项
答案
Aη=b,A(η+ξ
i
)=Aη=b,i=1,2,…,n-r,故η,η+ξ
1
,η+ξ
2
…,η+ξ
n-r
,均是Ax=b的解向量. 设有数k
0
,k
1
,k
2
,…,k
n-r
,使得k
0
η+k
1
(η+ξ
1
)+ k
2
(η+ξ
2
)+…+ k
n-r
(η+ξ
n-r
)=0, 整理得(k
0
+ k
1
+…+ k
n-r
)η+ k
1
ξ
1
+…+ k
n-r
ξ
n-r
=0,(*) (*)式左乘A,得(k
0
+ k
1
+…+ k
n-r
)b=0,其中b≠0,得k
0
+ k
1
+…+ k
n-r
=0(* *), 代入(*),因ξ
1
,ξ
2
,…,ξ
n-r
是对应齐次方程组的基础解系,线性无关,得 k
i
=0,i=1,2,…n-r. 代入(* *),得k
0
=0,从而有η,η+ξ
1
,η+ξ
2
,…,η+ξ
n-r
是Ax=b的n-r+1个线性无关解
解析
转载请注明原文地址:https://kaotiyun.com/show/C1T4777K
0
考研数学三
相关试题推荐
群众路线是政府工作的生命线。坚持群众路线,要求各级政府坚持对人民负责的原则,这是一种境界。下列做法中能够体现这一境界的是()。
有网友说:疫情之下,每个人都是志愿者。2020年1月20日以来,各地开展疫情防控志愿服务项目17.7万个,参与疫情防控的注册志愿者达361万人,记录志愿服务时间1.16亿小时。志愿服务已经()。
俗话说“人闲百病生”。医学研究证明,适度的紧张有益于健康激素的分泌,这种激素能增强身体的免疫力,抵御外界的不良刺激和疾病的侵袭。这说明()。
在突如其来的新冠肺炎疫情面前,人们没有退缩避让,而是团结起来、行动起来。有人来不及道别,留给孩子一个背影;有人没时间寒暄,留给亲人一封家书;有人顾不得疲惫,收拾包裹奔赴一线……无论在哪个工作岗位、无论何种职业身份,无数人舍小家为大家、舍小我顾大局。一切为了
如果n个事件A1,A2,…,An相互独立,证明:
设A与B均为n,阶矩阵,且A与B合同,则().
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:exy-xy=2和
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
随机试题
论述中共八大的内容和意义。(内蒙古大学2016年中国史真题)
手工矫正厚钢板的要点有哪些?
政治
33岁,输卵管妊娠破裂致严重腹腔内出血,以下哪项不宜使用自体输血
某男性患者,55岁。软腭处有一疱,约1cm大小,稍有糜烂,疼痛明显。皮肤尼氏征阳性。镜下可见,棘层松解,上皮内疱形成。基底细胞附着于结缔组织的上方,疱底可见不规则的乳头成绒毛状突起,突起表面有基底细胞层。病理诊断可考虑为()
规范中永久链路的定义是()。
中国古代教育有两条线索,官学和私学。官学的优点是:有正式的场所,有讲堂,藏书楼,有固定的学田,经济上有_________,私学的长处是:可以自由讲学,老师以个人身份讲学,不一定是朝廷的官员,因此思想_________。依次填入画横线部分最恰当的一项是(
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
科田法
Howmanyofuswouldtempforthreeyearswhilewewaitedfortheperfectjob?Notmanyofus,perhaps.ButWentworthMiller,th
最新回复
(
0
)