首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量(ξ,η)的密度函数为 试求 (Ⅰ)(ξ,η)的分布函数; (Ⅱ)概率
设随机变量(ξ,η)的密度函数为 试求 (Ⅰ)(ξ,η)的分布函数; (Ⅱ)概率
admin
2016-12-16
67
问题
设随机变量(ξ,η)的密度函数为
试求
(Ⅰ)(ξ,η)的分布函数;
(Ⅱ)概率
选项
答案
连续型随机变量(ξ,η)的概率密度为φ (x,y),则分布函数F(x,y)=P(X≤x,Y≤y)=∫
一∞
x
∫
一∞
y
φ(x,y)dxdy,若φ(x,y)的取值不分区域,则求二次积分即可求出F(x,y);若φ(x,y)分区域定义时,则先绘出φ(x,y)取非零值的区域D,再将其边界线段延长为直线,于是它们将整个平面分成若干个子区域,然后再根据P((ξ,η)∈G)=φ(x,y)dxdy,其中G为子区域与φ(x,y)取非零值的定义域的交集,求出各个小区域上的分布函数的表达式,即得F(x,y). (1)将φ(x,y)定义域中的边界线段延长为直线,它们将整个平面分成5个子区域: ①D
1
:x≤ 0或 y≤0时, F(x,y)=P(X≤x,Y≤y)=∫
一∞
x
∫
一∞
y
φ(x,y) dxdy=[*] ②D
2
:0<x≤1,0<y≤ 2时, F(x,y)=P(X≤x,Y≤y)=P(0≤X<1,0<Y≤y) =∫
一∞
x
∫
一∞
y
φ(x,y) dxdy=[*] =∫
0
x
∫
0
y
[*] ③D
3
:x>1,0<y≤2时, F(x,y)=P(X≤x,Y≤y)=P(0≤X<1,0<Y≤y) =[*]φ(x,y) dxdy=∫
0
x
∫
0
y
φ(x,y) dxdy [*] ④D
4
:0<x≤1,y>2时, [*] ⑤D
5
:x>1,y>2时, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/C6H4777K
0
考研数学三
相关试题推荐
求下列函数的所有二阶偏导数:
若方程a。xn+a1xn-1+…+aa-1x=0有一个正根x=x。,证明方程a。nxn-1+a1(n-1)xn-2+…+an-1=0必有一个小于x。的正根.
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).证明;
方程yy〞=1+yˊ2满足初始条件y(0)=1,yˊ(0)=O的通解为________.
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱,才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数).
当x→0时,下列四个无穷小量中,哪一个是比其他三个更低阶的无穷小量?()
设四元线性齐次方程组(1)为x1+x2=0x2-x4=0又已知某线性齐次方程组(Ⅱ)的通解为:k1(0,1,1,0)+k2(-1,2,2,1).问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
计算下列各定积分:
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的最大似然估计量.
随机试题
现代管理以()为中心。
下列关于使用棉絮钡餐诊断食道异物错误的是
男性,42岁。丙型肝炎史6年,HCV-RNA阳性,ALT38U,球蛋白28g/L,白蛋白38g/L。该病人目前是
女性,28岁,右上后牙遇热水痛3天,咬物不用此侧已3个月。检查:银色充填物边缘探龋洞达牙本质深层,叩痛(+)。热测引起痛,并持续数十秒。该患牙诊断应是()
大脑中动脉皮层支闭塞后引起的对侧偏瘫有什么特点
图书馆对于()相当于()对于记者
坚持节约资源和保护环境,这是我国的一项基本国策。()
依次填入下列句子横线处的关联词,最恰当的一项是:______从生与死哪一面看,老舍的一生______很不轻松。他留给人的普遍印象,最突出的莫过于温厚、宽容、幽默。______饶有意味的是,更易为家人和至交感知的,______是严肃沉默的形容举止和
抗日民族统一战线中的顽固势力是指
Thefirstthingforyoutodobeforeyoubuyclothesistoreadthelablesinsidetheclothes.Cheaperclothescansometimesfi
最新回复
(
0
)