首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量(ξ,η)的密度函数为 试求 (Ⅰ)(ξ,η)的分布函数; (Ⅱ)概率
设随机变量(ξ,η)的密度函数为 试求 (Ⅰ)(ξ,η)的分布函数; (Ⅱ)概率
admin
2016-12-16
32
问题
设随机变量(ξ,η)的密度函数为
试求
(Ⅰ)(ξ,η)的分布函数;
(Ⅱ)概率
选项
答案
连续型随机变量(ξ,η)的概率密度为φ (x,y),则分布函数F(x,y)=P(X≤x,Y≤y)=∫
一∞
x
∫
一∞
y
φ(x,y)dxdy,若φ(x,y)的取值不分区域,则求二次积分即可求出F(x,y);若φ(x,y)分区域定义时,则先绘出φ(x,y)取非零值的区域D,再将其边界线段延长为直线,于是它们将整个平面分成若干个子区域,然后再根据P((ξ,η)∈G)=φ(x,y)dxdy,其中G为子区域与φ(x,y)取非零值的定义域的交集,求出各个小区域上的分布函数的表达式,即得F(x,y). (1)将φ(x,y)定义域中的边界线段延长为直线,它们将整个平面分成5个子区域: ①D
1
:x≤ 0或 y≤0时, F(x,y)=P(X≤x,Y≤y)=∫
一∞
x
∫
一∞
y
φ(x,y) dxdy=[*] ②D
2
:0<x≤1,0<y≤ 2时, F(x,y)=P(X≤x,Y≤y)=P(0≤X<1,0<Y≤y) =∫
一∞
x
∫
一∞
y
φ(x,y) dxdy=[*] =∫
0
x
∫
0
y
[*] ③D
3
:x>1,0<y≤2时, F(x,y)=P(X≤x,Y≤y)=P(0≤X<1,0<Y≤y) =[*]φ(x,y) dxdy=∫
0
x
∫
0
y
φ(x,y) dxdy [*] ④D
4
:0<x≤1,y>2时, [*] ⑤D
5
:x>1,y>2时, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/C6H4777K
0
考研数学三
相关试题推荐
求函数f(x)=(1-x)/(1+x)在x=0点处带拉格朗口余项的n阶泰勒展开式.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:A2.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用(1)的结论计算定积分;
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设闭区域D(如图):x2+y2≤y,x≥0,f(x,y)为D上的连续函数,且求f(x,y).
设四元线性齐次方程组(1)为x1+x2=0x2-x4=0又已知某线性齐次方程组(Ⅱ)的通解为:k1(0,1,1,0)+k2(-1,2,2,1).问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
利用定积分计算下列极限:
随机试题
企业进行市场细分的根本目的在于提高企业的市场占有率,因此对目标市场的评价要围绕这一中心而展开。()
估计出血量很可能为( )需紧急进行的处理是( )
注册建造师变更聘用企业的,应当在与新聘用企业签订聘用合同后的()个月内,通过新聘用企业申请办理变更手续。
实用主义教育学的主要观点是()
不同的教学班,有不同的群体规范,不同的凝聚方式。对于已经形成了良好的学风和群体规范而且有较强凝聚力的班级,教师不宜采用的课堂管理方式是()。
【程序说明】表学生.DBF中共有100条记录,顺序执行下面命令。【程序】SETDELETEDOFFUSE学生DELETECOUNTPACKCOUNTZAPCOUNTUSE第三次COUNT的结果为______。
在考生文件夹下“samp3.accdb”数据库中已经设计好表对象“tBand”和“tLine”,同时还设计出以“tBand”和“tLine”为数据源的报表对象“rBand”。试在此基础上按照以下要求补充报表设计:(1)在报表的报表页眉节区位置添加
小张完成了毕业论文,现需要在正文前添加论文目录以便检索和阅读,最优的操作方法是
在考生文件夹下,打开文档WORD2.DOCX,按照要求完成下列操作并以该文件名(WORD2.DOCX)保存文档。【文档开始】姓名数学外语政治语文平均成绩王立98
A、 B、 C、 A
最新回复
(
0
)